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Abstract: Using full simulations of EAS we study the dependence of the angular distribution of electrons
at a given level of shower development on their distance fromthe shower axis. A parametrization of these
distributions for electrons with fixed energies is given. Wefind a significant correlation of the electron radial
angle and its lateral distance. This has an impact on the correct prediction of shower images in the Cherenkov
light what is particularly important for reconstruction ofshowers with rather small incident angles.
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1 Introduction
The motivation to undertake the present study has been
a working out of a correct method for reconstructing the
cascade curve of a shower from its optical images taken
by fluorescence detectors of the highest energy cosmic ray
arrays (such as the Pierre Auger Observatory, HiRes, Tele-
scope Array). In particular, an instantaneous image of a
nearby shower in the Cherenkov light depends on the three-
dimensional lateral and angular distributionf (θ ,r) of the
emitting electrons at the observed level (see later). These
distributions have not been found analytically as the bulk
of electrons in a shower have energies of the order of the
critical energyβ of the medium; the analytical methods,
however, work well for electron energiesE >> β .
The advent of computers has made possible studying char-
acteristics of EAS not available by analytical methods.
Since we are interested in a dependence of the electron an-
gular distributions at a given level of shower development
on the distance from the shower axis we have to refer to
shower simulations [1]. However, we think it would be in-
structive to present first some of the relevant analytical re-
sults concerning small-angle scattering of a charged rela-
tivistic particle propagating in matter.

2 Small-angle scattering
Let us consider a charged relativistic particle (electron)in-
cident along thez-axis on a medium. We first assume that
the thickness of the medium is such that the energy losses
(whatever they may be) are negligible along the particle
propagation. The next assumption is that the scattering an-
gles in each particular Coulomb process are small and that
the eventual angleθ (z) (i.e. after the particle traverses a fi-
nal distancez ) is small as well. One can write (and solve!)
the so called diffusion equations for the two-dimensional
distributionW (θx,x;z), wherex,y are the axes perpendic-
ular to z and θx is the projection of the angleθ on the
x,z-plane [2]. The solutions are given in a form of a two-
dimensional integral in a complex plane, but in the limit
z → ∞ we have obtained that
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Figure 1: Average radial angle< θr >, its dispersionσθr

and the dispersionσθt of the tangential angleθt as function
of the lateral distancer/rM (in Molière units). Electron
energiesE > 22 MeV,s = 0.95.
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whereκ is the correlation coefficient between the two
variablesθx andx. We derive thatκ =

√
3/2∼= 0.866. Thus,

in the considered case, the lateral distancex and the angle
θx in thex,z plane are strongly correlated. The value ofκ
does not depend on the details of the scattering, hence it is
independent of the particle energy.
The distribution (1) integrated overx (over θx) gives a
Gaussian distribution ofθx (of x), as should be expected,
with the mean= 0 and the varianceσθx equal to the vari-
ance in a single scattering multiplied by the number of the
scatterings.
In the process of the propagation through the medium the
particle (electron) loses, however, energy. On the assump-
tion that the scattering is due to the Coulomb forces we
have that
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Figure 2: Distributions ofρ = θr ·E0.73 (θ in degrees,E
in GeV) for three electron energiesE =22 MeV (black
curve), 67 MeV (red) and 200 MeV (blue) (from bins
(E,1.1E)); a)−1.4 < log r

rM
= y < −1.56, b)−0.9 < y <

−0.86, c)−0.4 < y < −0.36, d) all distances.
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where< θ 2
x (z) > is the electron mean square angle (in the

x,z- plane) at depthz, Es
∼= 15 MeV, E(z′) is the electron

energy at depthz′ andX0 is the cascade unit of the medium.
For the mean square lateral distance we obtain

< x2(z) >=
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Since the correlation coefficient betweenθx andx does
not depend on the electron energy it should be the same
at any depthz. It is then natural to guess that, allow-
ing for the energy losses, the two-dimensional distribution
W (θx,x;z) should have the same form as that in (1), where
(4) σ2

θx
=< θ 2

x (z) > andσ2
x =< x2(z) >. Indeed, this func-

tion does fulfil the diffusion equation.

3 Angular and lateral distribution of
electrons in EAS

In the extensive air shower, however, the situation is a lit-
tle different. Let us consider electrons with a fixed energy
E at some particular level of shower development. When
following one of them up its energy increases but at times
its path changes into a photon path, and then again into
that of an electron. Along a photon path the angle does not
change but the lateral distance does. Thus , the correlation
between them deteriorates. Moreover, the great grandpar-
ents of these electrons (with the fixed energyE ) have a
distribution of energies what is equivalent to a distribution
of z. Although this does not affect (practically) the final an-
glesθx(E) , it does affect the lateral deflectionsx(E) (see
factor(z− z′)2 in eq. (3)). Thus again, the correlation suf-
fers.
In order to study the above distributions and the correlation
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Figure 3: DistributionsFρ(ρ + 3;r/rM) (histograms) and
fits with Nishimura-Kamata functions (lines) for four dis-
tance bins: a)−1.4< y < −1.56, b)−1.0< y < −0.96, c)
−0.8 < y < −0.76, d)−0.4 < y < −0.36

of angles and distances we have simulated a proton shower
with primary energyE0 = 1017 eV. This is practically the
highest energy which can be fully simulated (without any
thinning) in a reasonable time. As it was shown earlier [3]
the angular, lateral and energy spectra of electrons do not
depend (practically) on the primary particle energy (or its
mass) once taken at the same level of shower development,
at the same ages. Thus, the results presented below refer
to large showers with any primary energy and mass. In this
paper we present results concerning mainly levels close to
the shower maximum, i.e.s ∼= 1.
From the simulated sample we calculate the correlation co-
efficientκ of the two variables , the radial angleθr andr
at s = 0.95 , whereθr is the projection of the particle an-
gle on thez,r - plane (containing the shower axis and the
vector~r ). We obtainκ ∼= 0.35÷ 0.4 for any of the elec-
tron energies, values smaller than in the case of the small
angle scattering (0.87), but not small enough to claim an
independence of the two variables. A clear demonstration
of this dependence is Fig.1 where the mean angle< θr >
is presented as function of the lateral distancer/rM (in the
Molière units) forE > 22 MeV. Also shown are the disper-
sionsσθr andσθt - that of the tangential angleθt being the
projection of the electron angleθ on the plane perpendicu-
lar to~r.
Our final aim is to use the electron distributions for accu-
rate predictions of the Cherenkov flux from EAS. This flux
(from each element of the shower path length) depends on
the shower ages of this element (as the shape of the energy
distribution depends ons only), on its heighth above see
level (as the Cherenkov threshold energyEth depends on
it) and, of course, on the total number of electrons thereN.
Thus, it is necessary to find the distributionsf (~θ ,r;E,s)
for fixed electron energiesE. Then, reconstructing a partic-
ular shower, the integration aboveEth(h) together with the
Cherenkov yield, gives the distribution of the Cherenkov
electrons. (An alternative way would be to findf ′(~θ ,r;s,h)
for the Cherenkov electrons but the former distributions



On the correlation of the EAS electron distributions
33RD INTERNATIONAL COSMIC RAY CONFERENCE, RIO DE JANEIRO 2013

<-1.36
M

-1.4<logr/r

τ
-3 -2 -1 0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

<-1.36
M

-1.4<logr/r

 a)

<-0.86
M

-0.9<logr/r

τ
-3 -2 -1 0 1 2 3 4 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

<-0.86
M

-0.9<logr/r

 b)

<-0.36
M

-0.4<logr/r

τ
-3 -2 -1 0 1 2 3 4 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

<-0.36
M

-0.4<logr/r

 c)

all r

τ
-3 -2 -1 0 1 2 3 4 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
all r

 d)

Figure 4: Distributions ofτ = θt ·E0.73 (θ in degrees,E
in GeV) for three electron energiesE =22 MeV (black
curve), 67 MeV (red) and 200 MeV(blue)(from bins
(E,1.1E)); a)−1.4< y < −1.56, b)−0.9 < y < −0.86, c)
−0.4 < y < −0.36, d) all distances.

are independent of their later use (Cherenkov) and may be
of a more general interest).
First we notice that the distributions ofθr for different E
(all r ) scale in such a way that the distribution ofρ = θr ·
Eα is (almost) independent ofE. For s = 0.95 we obtain
α = 0.73 ; its dependence ons being very weak. This is il-
lustrated in Fig.2 where the distributions ofρ = θr ·E0.73

are presented for three electron energies (from the region
where there are most of them) for all electron distancesr.
(However,α seems to decrease slightly withr, but at this
stage we adopt it as independent ofr.)
The value 0.73 can be understood as follows. From Eq.(2)
it can be easily derived that

√

< θ 2
r (E) > ≃ Es

β

√

β
E
− ln(1+

β
E

) (4)

if the electron energy loss rate for bremsstrahlung and ion-
isation equals (per unit path in cascade units)−dE/dt =
E +β , and its initial energyE0 >> E. In the energy region
0.2≤ E/β ≤ 2, where there are most electrons, the r.h.s. of
(4) can be very well approximated by∼ E−0.73. As it turns
out from simulations it is not only

√

< θ 2
r (E) > ·E0.73 that

is independent ofE, but (almost) also the distributions of
θr (Fig.2)
Next we want to find the distributions ofθr ·E0.73 for differ-
entr. A suitable function seems to be that of the Nishimura-
Kamata form:β µ/B(µ ,ν − µ) · xµ−1(1+ β x)−ν . Sinceθr
( andρ ) may be negative we add to the variableρ a value
3 deg· GeV0.73 and fit the distributions of the above form
with x = ρ + 3. The results are illustrated in Fig.3 where
the actual distributions ofx = θr ·E0.73+3 are presented
for electrons from four distance bins, together with the fit-
ted curves. We see that the fits are quite good. (The fits
with a gamma function were worse). The integrals overx
of all distributions are equal to unity. The dependence of
µ , ν andβ on y = log(r/rM) have been parametrised as 3-

<-1.36
M

-1.4<logr/r

τ
-3 -2 -1 0 1 2 3 4 5

)
M

;r
/r

τ( τ
F

0

0.2

0.4

0.6

0.8

1

<-1.36
M

-1.4<logr/r

 a)

<-0.96
M

-1.0<logr/r

τ
-3 -2 -1 0 1 2 3 4 5

)
M

;r
/r

τ( τ
F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

<-0.96
M

-1.0<logr/r

 b)

<-0.76
M

-0.8<logr/r

τ
-3 -2 -1 0 1 2 3 4 5

)
M

;r
/r

τ( τ
F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

<-0.76
M

-0.8<logr/r

 c)

<-0.36
M

-0.4<logr/r

τ
-3 -2 -1 0 1 2 3 4 5

)
M

;r
/r

τ( τ
F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

<-0.36
M

-0.4<logr/r

 d)

Figure 5: DistributionsFτ(τ;r/rM) (histograms) and fits
with two Gaussians for distance bins as in Fig.3.

degree polynomials:a ·y3+b ·y2+ c ·y+d, and the coeffi-
cient values are given in Table 1.
There remain the distributions of the tangential angle

θt . At this stage of analysis we assume that there is no
correlation betweenθt and θr at a particular distance
bin. Indeed, our study shows that the angular distribu-
tion (at a fixedr and energyE) depends (roughly) on
η =

√

(θr− < θr >)2 + θ 2
t ; if the distribution ofη (per

unit solid angle) was Gaussian (what is only approximately
true) then the distributions ofθr andθt would be indepen-
dent.
We first check whether the distributions ofτ = θt ·E0.73

are independent ofE, for each bin oflog(r/rM). They are
and the independence is even better fulfilled than that for
ρ = θr ·E0.73. In Fig.4 we present the results for three val-
ues ofE (as in Fig.2, three different colours) for three dis-
tance bins ( a), b), c)) and for allr (d). Then we fit the distri-
butions ofτ for each distance bin with a sum of two Gaus-
sian functions. Each fit has three free parameters:σ1,σ2 -
the widths of each Gaussian andp - the weight of the first
one (the both means are zero). The parameters have been
parametrized as functions ofy = log(r/rM) with 2-degree
polynomialsb ·y2+ c ·y+d ; the values of the coefficients
are given in Table 1. In Fig.5 we compare the actual distri-
butions ofτ with the fitted functions for four distance bins.
The fits are quite satisfactory.
Finally, at the considered level (s = 0.95) the number of
electrons with energy(E,E + dE) at a lateral distance
(r,r + dr) with angles(θr,θr + dθr) and (θt ,θt + dθt)
equals (with our approximations)

N · f (~θ ,r;E,s)dθrdθtdr dE = (5)

∂ 2N(r;E)dr dE
∂ r∂E

·Fρ(θrE0.73+3;
r

rM
)E0.73 ·dθr ·

·Fτ(θtE
0.73;

r
rM

)E0.73dθt

where Fρ(x; r
rM

) = β µ/B(µ ,ν − µ) · xµ−1(1 + β x)−ν

andFτ(τ; r
rM

) = 1√
2π [ p

σ1
· exp(−τ2

2σ2
1
)+ (1−p)

σ2
· exp(−τ2

2σ2
2
)].
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The lateral distribution for all angles1N ∂ 2N(r;E)/∂E∂ r
for electrons with fixed energiesE has been shown to de-
pend onr/rM ands only [4] and parametrised there accord-
ingly. N is the total number of electrons on the considered
level and has to be taken from simulations as< N(s) >,
or from the Gaisser-Hillas curve.B(µ ,ν − µ) is the Euler
beta function.

coeff→ a b c d
↓parameter

µ - 26.32 1.6 21.34
ν 0.0 0.0 0.0 171.0
β -0.086 -0.044 -0.019 0.041
σ1 - - 0.138 0.905
σ2 - -0.092 -0.07 0.443
p - - 0.169 0.463

Table 1: Coefficients of the 3-degree polynomials
ay3 + by2+ cy + d describing the parameters in the first
column.

4 Shower image in the Cherenkov light
The UHECR experiments, like HiRes, Auger and TA, mea-
sure instantaneous optical images of showers propagating
through the atmosphere. The fluorescence light dominates
for most shower geometries (see e.g. [5]) but for viewing
anglesδ (the angle between the shower axis and the direc-
tion from the observed shower element to the telescope)
smaller than∼ 30◦ the Cherenkov flux becomes important
as well. If the shower is close enough so that its lateral ex-
tent can be measured by the telescope camera, the number
of Cherenkov photons registered by an individual pixel of
the camera will depend on the number of the emitting elec-
trons at a particular lateral distance element seen by this
pixel, having such angles so that the photons arrive to that
pixel. Thus, the angular distribution of the emitting elec-
trons has to be known as a function of their lateral distance.
For distant showers (when all Cherenkov light falls into
one pixel) one simply has that the Cherenkov signal is
∼ dNch(δ )/dΩ, what is the angular distribution of all
Cherenkov electrons (integrated over lateral distancer) but
if more pixels are hit, the more accurate way to predict the
Cherenkov flux (as above) should be applied.
To illustrate when the effect is important we have calcu-
lated the value of the Cherenkov signal produced ats ∼ 1
and observed from two distances such that the total image
is contained within angleζ . Fig.6 presents the dependence
of the signal as a function of the viewing angleδ calcu-
lated in an approximate way and accurately. The difference
is better seen in Fig.7 where the ratio of the accurate to
the approximate signal values is presented. We can see that
even forζ = 3.6◦ the difference may be as big as∼ 10%
or more.

5 Conclusions
Basing on a detailed simulation of 1017 eV showers we
have worked out approximate formulae describing angu-
lar distribution of electrons as functions of their lateral
distance and energy, close to shower maximum. We have
also found that the distributions depend onθ · Eα (with
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Figure 6: Cherenkov signalS (in arbitrary units) produced
at shower maximum (s ≃ 1) (per unit solid angle) as func-
tion of viewing angleδ of the centre of its image with angu-
lar radiusζ . Approximate calculations (S ∼ dNch(δ )/dΩ)
- black curve, accurate ones forζ = 3.6◦ - red,ζ = 7.2◦ -
blue.
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Figure 7: Ratio of the accurately calculated Cherenkov sig-
nal to the approximate one as function ofδ , for ζ = 3.6◦ -
red,ζ = 7.2◦ - blue.

α ∼= 0.73, explained in a simple way) rather than onθ and
E separately.
Allowing for a correlation between the angular and lateral
distributions is important in the reconstruction of shower
characteristics from its optical images, particularly when
the Cherenkov component is not to be neglected. The de-
pendence on the shower age parameters will be studied.
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