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On the correlation of the lateral and angular distributions of electronsin EAS
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Abstract: Using full simulations of EAS we study the dependence of thguéar distribution of electrons
at a given level of shower development on their distance ftbenshower axis. A parametrization of these
distributions for electrons with fixed energies is given. Yl a significant correlation of the electron radial
angle and its lateral distance. This has an impact on thecioprediction of shower images in the Cherenkov
light what is particularly important for reconstruction sfiowers with rather small incident angles.
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1 Introduction E|

The motivation to undertake the present study has been 5
a working out of a correct method for reconstructing the 8
cascade curve of a shower from its optical images taken E;
by fluorescence detectors of the highest energy cosmic ray -,
arrays (such as the Pierre Auger Observatory, HiRes, Tele- £
scope Array). In particular, an instantaneous image of a ¢
nearby shower in the Cherenkov light depends on the three- ;¢
dimensional lateral and angular distributié(,r) of the

emitting electrons at the observed level (see later). These /
10

distributions have not been found analytically as the bulk
;_//0

\

of electrons in a shower have energies of the order of the
critical energyf of the medium; the analytical methods,
however, work well for electron energi&s>> f3 .

The advent of computers has made possible studying char 3 /

acteristics of EAS not available by analytical methods. //

Since we are interested in a dependence of the electron ar T T T
gular distributions at a given level of shower development &) -15 -1 0.5 0 0.5 1
on the distance from the shower axis we have to refer to logi/ny

shower simulationg]1]. However, we think it would be in-

structive to present first some of the relevant analytical reFigurel: Average radial angle: 6 >, its dispersiong,

sults concerning small-angle scattering of a charged relaynq the dispersioag, of the tangential anglé as function

tivistic particle propagating in matter. of the lateral distance/rv (in Moliére units). Electron
energieE€ > 22 MeV,s= 0.95.

2 Small-angle scattering

Let us consider a charged relativistic particle (election)
cident along the-axis on a medium. We first assume that
the thickness of the medium is such that the energy losses wherek is the correlation coefficient between the two
(whatever they may be) are negligible along the particlevariablesty andx. We derive thak = v/3/2220.866. Thus,
propagation. The next assumption is that the scattering ain the considered case, the lateral distaxead the angle
gles in each particular Coulomb process are small and tha in thex,z plane are strongly correlated. The valuexof

the eventual anglé(z) (i.e. after the particle traverses a fi- does not depend on the details of the scattering, hence it is
nal distance ) is small as well. One can write (and solve!) independent of the particle energy.

the so called diffusion equations for the two-dimensionalThe distribution (1) integrated over (over 6) gives a
distributionW(6,x; z), wherex,y are the axes perpendic- Gaussian distribution oy (of x), as should be expected,
ular to z and 6 is the projection of the anglé on the  with the mean= 0 and the variancey, equal to the vari-

X, z-plane [2]. The solutions are given in a form of a two- ance in a single scattering multiplied by the number of the
dimensional integral in a complex plane, but in the limit scatterings.

+_

1 62 B;-x X
2(1— k2 (o_gxz -2 0g, - Ox o)?)}

X exp{—

z— oo we have obtained that In the process of the propagation through the medium the
L particle (electron) loses, however, energy. On the assump-
W(6y,%2) = L tion that the scattering is due to the Coulomb forces we

have that

2109, 0y V1 — K2
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Figure2: Distributions ofp = 6 - E®3 (8 in degreesE
in GeV) for three electron energids =22 MeV (black
curve), 67 MeV (red) and 200 MeV (blue) (from bins
(E,11E)); @) ~14<log;- =y < —156,0b)-09<y<
—0.86,¢c)—-0.4 <y < —0.36, d) all distances.

Es 12dZ

{ESIF-

where< 62(z) > is the electron mean square angle (in the
x,z- plane) at deptlz, Es = 15 MeV, E(Z) is the electron
energy at deptld andXg is the cascade unit of the medium.
For the mean square lateral distance we obtain

<x2(z)>:/0 (z—z’)z[ r%

Since the correlation coefficient betwe@pandx does

< 62(2) >:/

0

)

z

Es
E(Z)

®3)

not depend on the electron energy it should be the sam

at any depthz It is then natural to guess that, allow-
ing for the energy losses, the two-dimensional distributio
W(6y,x;z) should have the same form as that in (1), wher
(4) 05 =< 62(2) > ando? =< x(z) >. Indeed, this func-
tion does fulfil the diffusion equation.

3 Angular and lateral distribution of
electronsin EAS

In the extensive air shower, however, the situation is a lit
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Figure3: DistributionsF,(p + 3;r/rm) (histograms) and
fits with Nishimura-Kamata functions (lines) for four dis-
tance bins: a)-1.4<y< —156,b)-1.0<y< —0.96, ¢)
—08<y<—-0.76,d)-0.4<y< —0.36

of angles and distances we have simulated a proton shower
with primary energyEq = 107 eV. This is practically the
highest energy which can be fully simulated (without any
thinning) in a reasonable time. As it was shown eariér [3]
the angular, lateral and energy spectra of electrons do not
depend (practically) on the primary particle energy (or its
mass) once taken at the same level of shower development,
at the same age Thus, the results presented below refer
to large showers with any primary energy and mass. In this
paper we present results concerning mainly levels close to
the shower maximum, i.s.2 1.

From the simulated sample we calculate the correlation co-
%fficientK of the two variables , the radial angle andr
ats=0.95, where§; is the projection of the particle an-
gle on thez r - plane (containing the shower axis and the
vectorr ). We obtaink = 0.35-- 0.4 for any of the elec-
tron energies, values smaller than in the case of the small
angle scattering (0.87), but not small enough to claim an
independence of the two variables. A clear demonstration
of this dependence is Hig.1 where the mean argh >

is presented as function of the lateral distanag (in the
Moliere units) forE > 22 MeV. Also shown are the disper-
sionsag, andoy, - that of the tangential ang@ being the
projection of the electron angion the plane perpendicu-

tle different. Let us consider electrons with a fixed energylartor. o

E at some particular level of shower development. Wherur final aim is to use the electron distributions for accu-
fo”owing one of them up its energy increases but at timegate prEd|Ct|0nS of the Cherenkov flux from EAS. This flux
its path changes into a photon path, and then again inttfrom each element of the shower path length) depends on
that of an electron. Along a photon path the angle does ndfe shower agsof this element (as the shape of the energy
change but the lateral distance does. Thus , the correlatiofistribution depends osonly), on its height above see
between them deteriorates. Moreover, the great grandpdgvel (as the Cherenkov threshold enefjy depends on

ents of these electrons (with the fixed eneEyy have a
distribution of energies what is equivalent to a distribuati
of z. Although this does not affect (practically) the final an-
gles6«(E) , it does affect the lateral deflectiorE) (see
factor (z— Z)? in eq. (3)). Thus again, the correlation suf-
fers.

In order to study the above distributions and the correfatio

it) and, of course, on the total number of electrons thidre
Thus, it is necessary to find the distributioh&d, r; E,s)

for fixed electron energids. Then, reconstructing a partic-
ular shower, the integration abofzg, (h) together with the
Cherenkov vyield, gives the distribution of the Cherenkov
electrons. (An alternative way would be to firh’c{é, r;s,h)

for the Cherenkov electrons but the former distributions
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Figure4: Distributions of T = 6 - E®72 (8 in degreeskE
in GeV) for three electron energids =22 MeV (black
curve), 67 MeV (red) and 200 MeV(blue)(from bins
(E,1.1E));a)-1.4<y< —156,b)-0.9<y< —0.86, c)

—0.4<y< —0.36, d) all distances.

Figure5: DistributionsF;(1;r/rm) (histograms) and fits

with two Gaussians for distance bins as in Fig.3.

degree polynomials- y® +b-y?+c-y+d, and the coeffi-
cient values are given in Table 1.

There remain the distributions of the tangential angle
Q(. At this stage of analysis we assume that there is no
Correlation betweerf, and 6, at a particular distance
bin. Indeed, our study shows that the angular distribu-
tion (at a fixedr and energyE) depends (roughly) on
n =+/(6— < 6 >)2+ 82 if the distribution ofn (per
unit solid angle) was Gaussian (what is only approximately

are independent of their later use (Cherenkov) and may b
of a more general interest).

First we notice that the distributions éf for differentE

(all r ) scale in such a way that the distributionmt 6; -

EY is (almost) independent d&. Fors= 0.95 we obtain

a = 0.73; its dependence arbeing very weak. This is il-

9°N(r;E)drdE

are presented for three electron energies (from the regioﬁent-
The value 073 can be understood as follows. From Eq.(2)P = 6 - E®"3. In Figl2 we present the resullts for three val-
sian functions. Each fit has three free parameteyso, -
isation equals (per unit path in cascade UnitgE /dt — parametrized as functions g= log(r /rm) with 2-degree
out from simulations itis not only/< 62(E) >-E®"3that The fits are quite satisfactory.
equals (with our approximations)
3 deg- GeW-73 and fit the distributions of the above form 3i3E

lustrated in Fig where the distributions pf= 6, - E®73 true) then the distributions & and 6 would be indepen-
where there are most of them) for all electron distarrces We first check whether the distributions of= 6 - 073
(However,a seems to decrease slightly withbut at this '€ independent &, for each bin ofog(r/rm). They are
stage we adopt it as independent of and the independence is even better fulfilled than that for
it can be easilv derived that ues ofE (as in Fid2, three different colours) for three dis-
y tance bins (&), b), ¢)) and for al{d). Then we fit the distri-
Es /B B butions oft for each distance bin with a sum of two Gaus-
V< ORE) >~ =4[5 —In(1+%) )

BVE E the widths of each Gaussian apd the weight of the first

if the electron energy loss rate for bremsstrahlung and ior2n€ (the both means are zero). The parameters have been
. 2 . . .
E + B, and its initial energyEy >> E. In the energy region Polynomialsb-y*+-c-y+d; the values of the coefficients
0.2 < E/B < 2, where there are most electrons, the r.h.s. oft€ given in Table 1. In Figl5 we compare the actual distri-
4) can be ;ery well approximated byE %73, As it turns butions ofr with the fitted functions for four distance bins.
e C= Finally, at the considered leve$ & 0.95) the number of
'93 '{E?g&‘;”de”t OF, but (almost) also the distributions of ¢jecirons with energyE,E + dE) at a lateral distance
\ ;
Next we want to find the distributions 6f - E%73 for differ- (r,r + dr) with angles (6,6 + d&) and (&.6 + d&)
entr. A suitable function seems to be that of the Nishimura-
Kamata form',G“/B(u,v—u)-x“*1(1+[§x)*". Sinceb6; N-f(6,r;E,s)d6,d6drdE = (5)
(andp) m\a/%/ be negative we add to the variapla value ;
7 -Fp(6E®"®+3;,—)E®"®.d6; -

with x = p + 3. The results are illustrated in Hi§j.3 where '™
the actual distributions of = 6, - E®73+ 3 are presented Fo(8E®T% L HEOT34g
for electrons from four distance bins, together with the fit- 'm

ted curves. We see that the fits are quite good. (The fits .r N _ pu -1 v
with a gamma function were worse). The integrals aver where Fy(x W) =B /B(“"; —H) XL Ex)
of all distributions are equal to unity. The dependence ofandF(t; L) = \/%T[% -exp(55) + (1;2p) -exp(55)]-
K, vandB ony=1log(r/rm) have been parametrised as 3- ! 2
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The lateral distribution for all anglqm#(?ZN(r; E)/0Eor
for electrons with fixed energigs has been shown to de-
pend orr /ry andsonly [4] and parametrised there accord- s
ingly. N is the total number of electrons on the considered
level and has to be taken from simulations<a$\(s) >,
or from the Gaisser-Hillas curv&(u,v — ) is the Euler

10°

10

beta function.
10"
coeff— a b c d \\

|parameter, 10% s
u - 26.32| 16 |21.34 i
v 0.0 0.0 0.0 |171.0 0 5 10 15 20 25 80g50.3
B -0.086 | -0.044| -0.019| 0.041
o1 - - 0.138 | 0.905 Figure6: Cherenkov signab (in arbitrary units) produced
02 - -0.092] -0.07 | 0.443 at shower maximums(~ 1) (per unit solid angle) as func-
p i i 0.169 | 0.463 tion of viewing angl& of the centre of its image with angu-

lar radius{. Approximate calculationsS~ dNg(5)/dQ)
- black curve, accurate ones for= 3.6° - red,{ = 7.2° -
blue.

Table 1: Coefficients of the 3-degree polynomials
ay®+by?+cy+d describing the parameters in the first
column.

12

4 Shower imagein the Cherenkov light B WWMWW%WW

0.87 A
The UHECR experiments, like HiRes, Auger and TA, mea- N h
sure instantaneous optical images of showers propagating  °¢f
through the atmosphere. The fluorescence light dominates  +
for most shower geometries (see eld. [5]) but for viewing T
anglesd (the angle between the shower axis and the direc- .
tion from the observed shower element to the telescope) F
smaller than~ 30° the Cherenkov flux becomes important T T
as well. If the shower is close enough so that its lateral ex-
tent can be measured by the telescope camera, the number
of Cherenkov photons registered by an individual pixel of Figure7: Ratio of the accurately calculated Cherenkov sig-
the camera will depend on the number of the emitting elecral to the approximate one as functiondffor { = 3.6° -
trons at a particular lateral distance element seen by thiged, = 7.2° - blue.
pixel, having such angles so that the photons arrive to that
pixel. Thus, the angular distribution of the emitting elec-
trons has to be known as a function of their lateral distancea = 0.73, explained in a simple way) rather than®and
For distant showers (when all Cherenkov light falls into E separately.
one pixel) one simply has that the Cherenkov signal isAllowing for a correlation between the angular and lateral
~ dNg(0)/dQ, what is the angular distribution of all distributions is important in the reconstruction of shower
Cherenkov electrons (integrated over lateral distafnbeit ~ characteristics from its optical images, particularly whe
if more pixels are hit, the more accurate way to predict thethe Cherenkov component is not to be neglected. The de-

o

30 3 deg]35

Cherenkov flux (as above) should be applied. pendence on the shower age parameteitl be studied.
To illustrate when the effect is important we have calcu-
lated the value of the Cherenkov signal produces-atl Acknowledgment: The subject of the paper has been studied
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