Revisiting the Contact Process

Maria Eulália Vares Universidade Federal do Rio de Janeiro

World Meeting for Women in Mathematics - July 31, 2018

The classical contact process

- ullet $G=(\mathbb{V},\mathbb{E})$ graph, locally finite. Most classical example $G=\mathbb{Z}^d$.
- A Markov process $\{\xi_t\}_{t\geq 0}$ with values on $\{0,1\}^{\mathbb{V}}$:

```
\xi_t(x) = 1 means x is infected at time t
```

 $\xi_t(x) = 0$ means x is healthy at time t

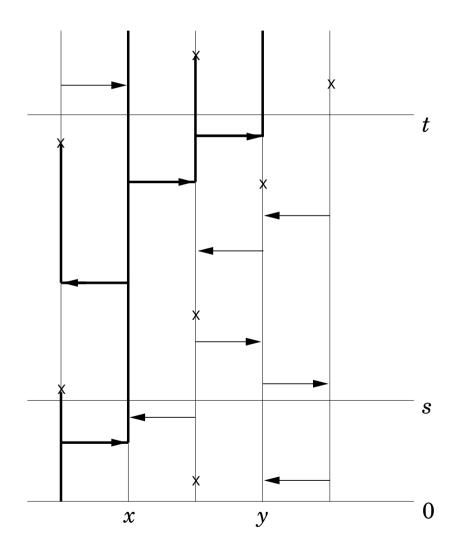
• Time evolution:

An infected individual transmits the infection with rate $\lambda>0$ to each of its healthy neighbors, and heals with rate 1.

Identify ξ_t with $\{x \colon \xi_t(x) = 1\}$ (set of infected individuals at time t)

Model introduced by T. Harris in 1974.

The classical contact process



Dynamical phase transition

There exists $\lambda_c \in (0,+\infty)$ so that

- ullet If $\lambda < \lambda_c$ then $P(\xi_t^{\{0\}} = \underline{0} \text{ for some } t) = 1$ (subcritical)
- ullet If $\lambda>\lambda_c$ then $P(\xi_t^{\{0\}}
 eq\underline{0}$ for all t)>0 (supercritical)
- ullet $\lambda > \lambda_c$ \Rightarrow positive probability that the infection remains forever

Dynamical phase transition

There exists $\lambda_c \in (0, +\infty)$ so that

- If $\lambda < \lambda_c$ then $P(\xi_t^{\{0\}} = \underline{0} \text{ for some } t) = 1 \text{ (subcritical)}$
- If $\lambda > \lambda_c$ then $P(\xi_t^{\{0\}} \neq \underline{0} \text{ for all } t) > 0$ (supercritical)
- ullet $\lambda > \lambda_c$ \Rightarrow positive probability that the infection remains forever

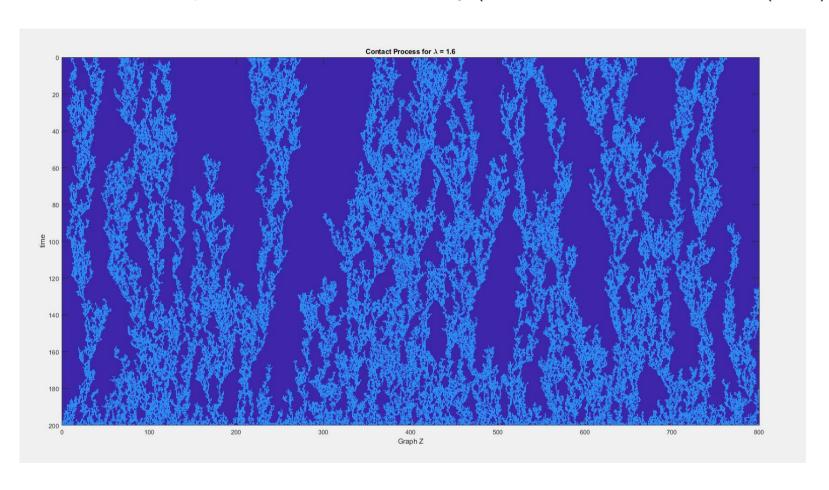
For more general graphs than \mathbb{Z}^d the supercritical regime splits into at least two: $0 < \lambda_{1,c} < \lambda_{2,c} < \infty$ (Pemantle (1992), homogeneous tree)

- Weak survival $\lambda \in (\lambda_{1,c}, \lambda_{2,c})$
- Strong survival $\lambda > \lambda_{2,c}$
- ullet For $G=\mathbb{Z}^d$ these two critical values coincide. $\lambda>\lambda_c\Rightarrow$ two extremal invariant measures: u_λ,δ_0 .

Remark: There is a huge literature. Not all detailed credits in this too quick review. (See the related monograph by T. Liggett)

Dynamical phase transition

For $G = \mathbb{Z}^d$, the process dies out at criticality (Bezuidenhout and Grimmett (1990)).

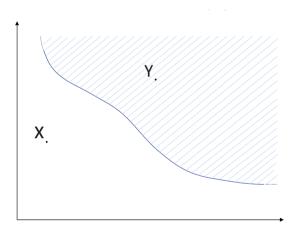


Simulation by Stefanos van Dijk d=1, λ close to λ_c .

Metastability

If $G=\mathbb{Z}^d$ and $\lambda>\lambda_c$ the model exhibits metastability. (Valid also for more general graphs if λ large enough).

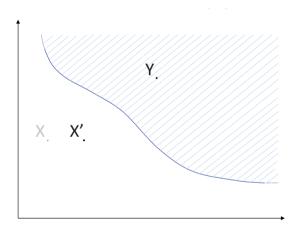
Metaestability: frequent phenomenon in thermodynamic systems close of a first order phase transition.



Metastability

If $G = \mathbb{Z}^d$ and $\lambda > \lambda_c$ the model exhibits metastability. (Valid also for more general graphs if λ large enough).

Metaestability: frequent phenomenon in thermodynamic systems close of a first order phase transition.



Plenty of examples in nature, in physical systems.

- supercooled liquids, super-saturated vapors;
- ferromagnets, finds many applications.

Metastability for the contact process

Process restricted to a large finite box $\Lambda_N = \{x : ||x||_{\infty} \leq N\}$ in \mathbb{Z}^d .

 $\lambda > \lambda_c$ and large initial configuration.

• Extinction time τ_N is finite but exponentially large in $|\Lambda_N|$, and loses memory as $N \to \infty$.

$$rac{ au_N}{E(au_N)} o {\sf EXP} \ (1)$$

• Process behaves as if in equilibrium with the largest invariant measure before collapsing.

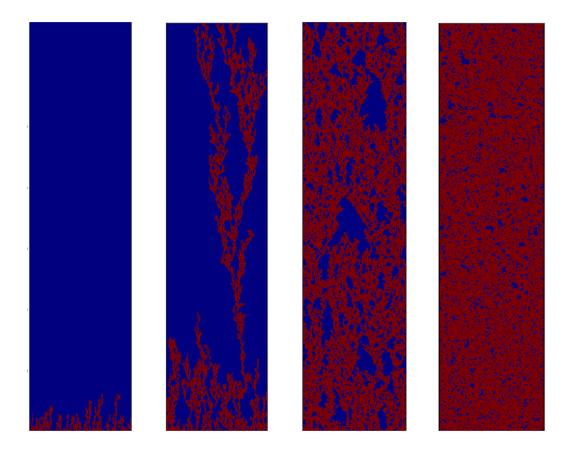
d=1 Cassandro, Galves, Olivieri, V. (1984) Schonmann (1985)

 $d \ge 2$ Mountford (1993, 1999)

Trees and more general graphs Mountford, Mourrat, Schapira, Valesin, Yao (2016)

A contact process with two species. Mariela P. Machado (2018) - preprint

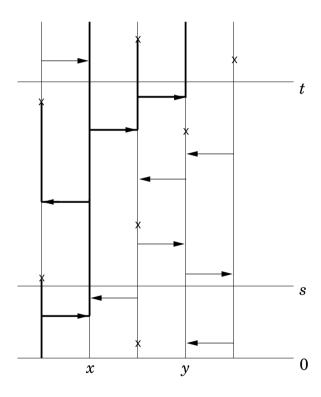
Metastability for the contact process



Simulations by Daniel Valesin

The renewal contact process

Same construction except that the recovery times are not anymore given by Poisson processes.



- ullet For each ordered pair (x,y) of neighbouring points in \mathbb{Z}^d a Poisson process $N_{x,y}$ of rate λ . (The arrows)
- ullet Take independent renewal processes \mathcal{R}_x for $x \in \mathbb{Z}^d$. (The crosses)
- ullet Parameters: λ and μ (the law of the times between two consecutive crosses, assumed i.i.d.)

The renewal contact process

Our process is then constructed via paths as before.

The contact renewal process starting at $A\subseteq\mathbb{Z}^d,\ \xi^A_t$

$$\xi_t^A = \{y\colon \exists \text{ a path from } (x,0) \text{ to } (y,t) \text{ for some } x\ \in\ A\}.$$

- ullet We no longer have a Markov process on $\{0,1\}^{\mathbb{Z}^d}$.
- The questions regarding percolation continue to make sense:

$$\lambda_c = \inf\{\lambda \colon P(\xi_t^{\{0\}} \neq \varnothing \, \forall t) > 0\}$$

• May we have $\lambda_c = 0$?

Theorem 1. (Fontes, Marchetti, Mountford, V)

If $\mu(t,+\infty) \geq t^{-\alpha}$ for some $\alpha < 1$ (all t large) plus some regularity conditions, then $\lambda_c = 0$.

Theorem 2. (Fontes, Mountford, V, 2018)

If $\int t^2 \mu(dt) < \infty$ then $\lambda_c > 0$ for any $d \ge 1$.

(Robust argument; branching)

How to improve this?

Hypothesis A: μ has a density f and the hazard rate $h(t) = \frac{f(t)}{\mu(t,+\infty)}$ is decreasing in t.

Theorem 3.(Fontes, Mountford, V, 2018)

Let d=1. If μ satisfies Hypothesis A and $\int t^{\alpha}\mu(dt)<\infty$ for some $\alpha>1$, then $\lambda_c>0$.

Our arguments rely on putting together distinct crossing paths. They require d=1.

A very convenient construction:

• h the hazard rate function

 η be a P.p.p. on $\mathbb{R} \times (0, +\infty)$ with rate 1.

To construct a renewal process starting at some point $t_0 \in \mathbb{R}$, consider all points of η in $(t_0, +\infty) \times (0, +\infty)$ that are under the graph of the function $t \mapsto h(t-t_0)$.

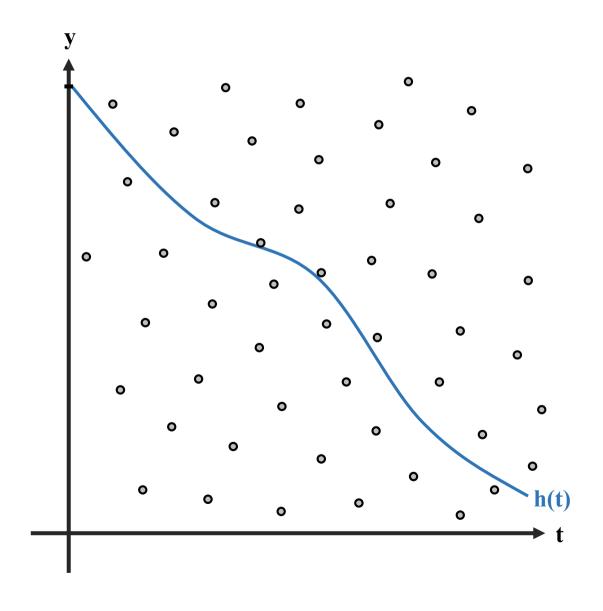
• Take the point with the smallest first coordinate, say (t_1, u_1) ;

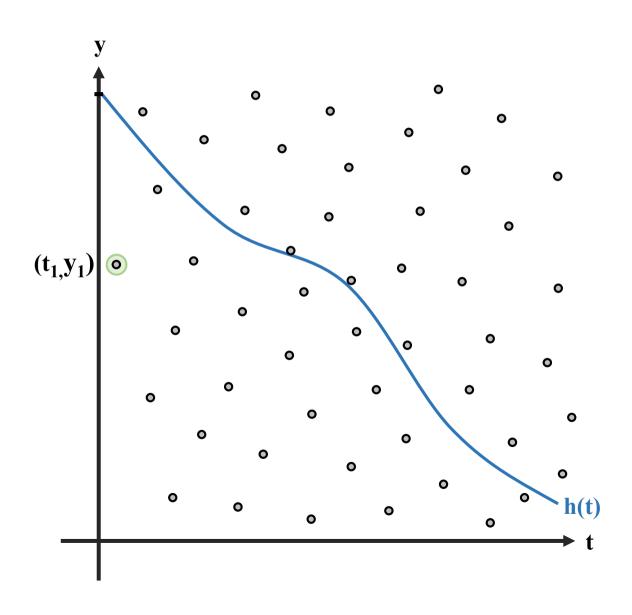
$$P(t_1-t_0>s)=e^{-\int_0^s h(v)dv}=\mu(s,\infty)$$
 i.e. t_1-t_0 distributed according to μ .

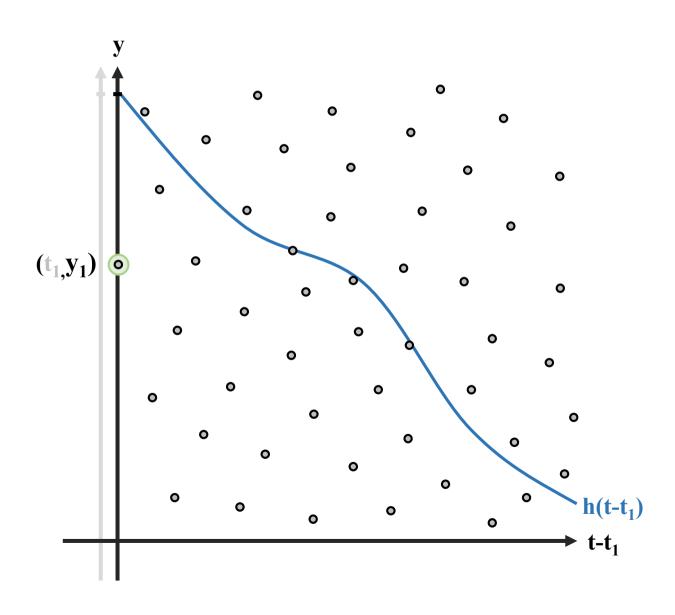
- ullet Having obtained t_1 we repeat the procedure replacing t_0 by t_1 .
- The properties of the P.p.p. $\Rightarrow t_1 < t_2 < \ldots$ so that $t_i t_{i-1}, i \geq 1$ are i.i.d. with density f.

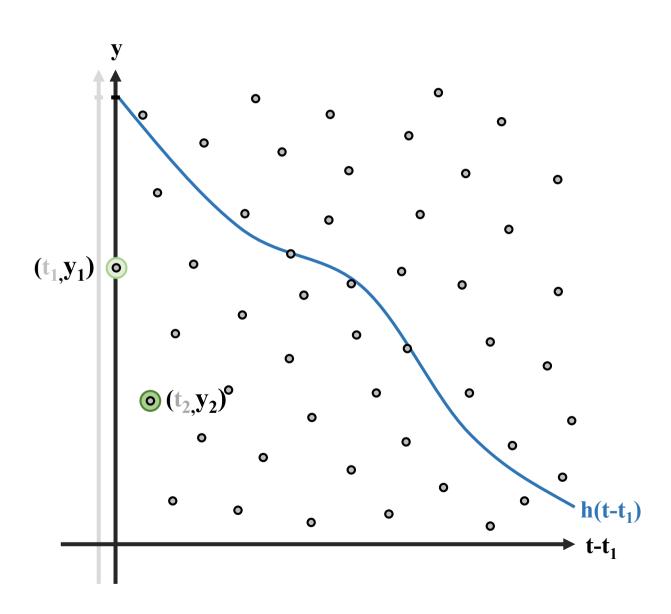
Useful consequence:

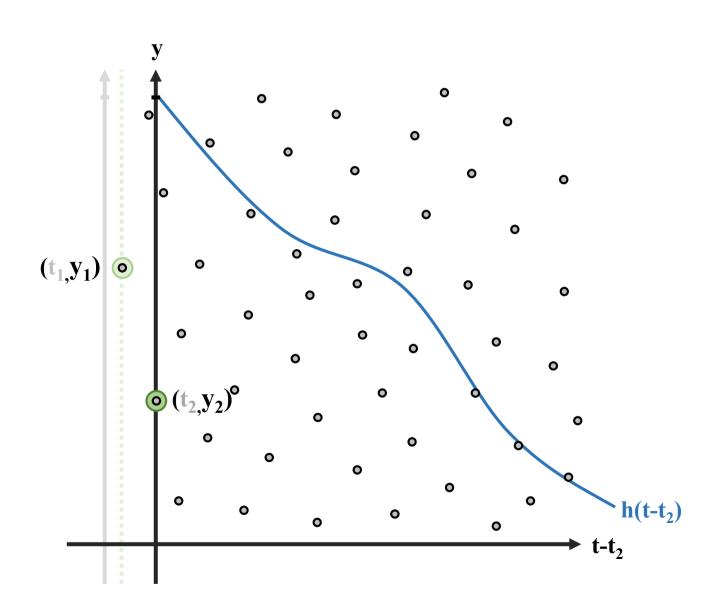
• If h is decreasing, the renewal process is an increasing function of the points in the P.p.p.

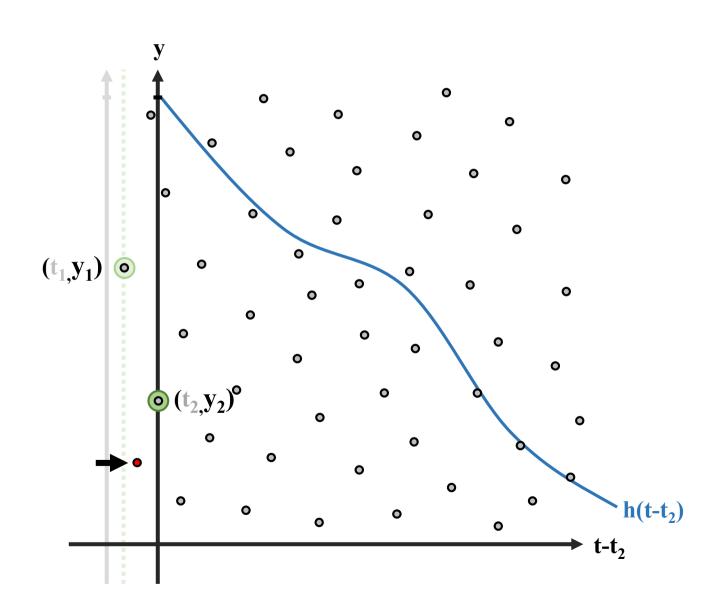


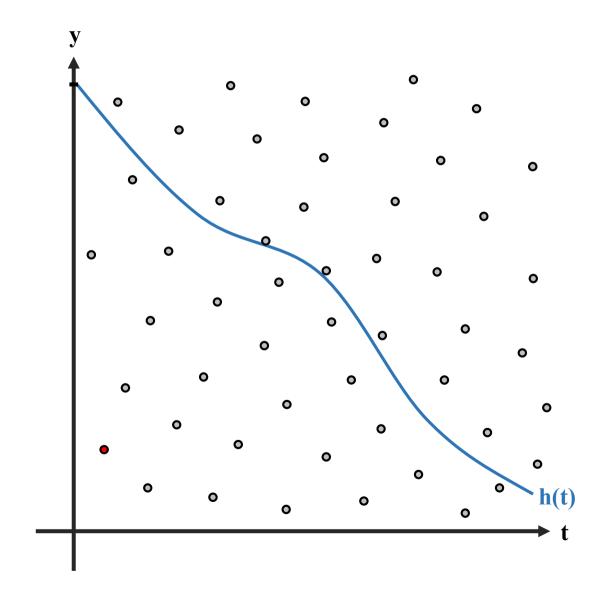


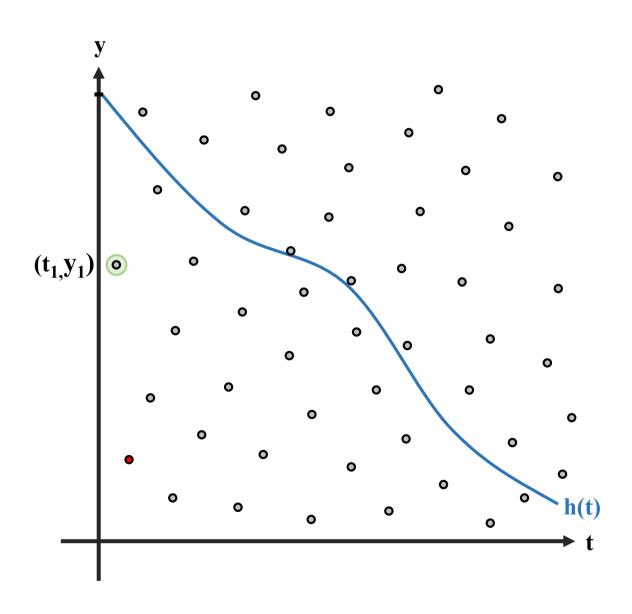


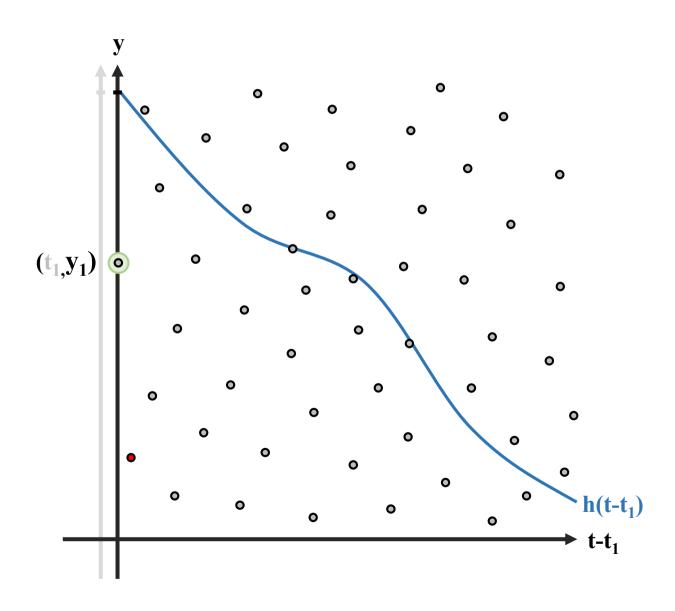


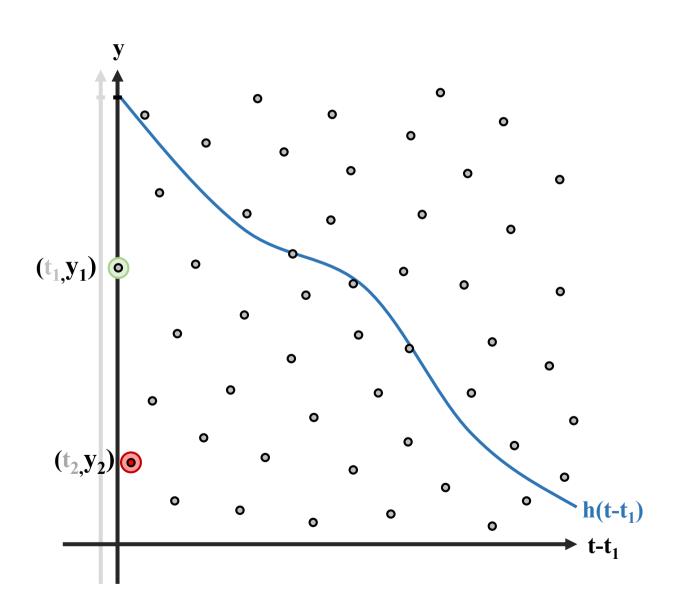


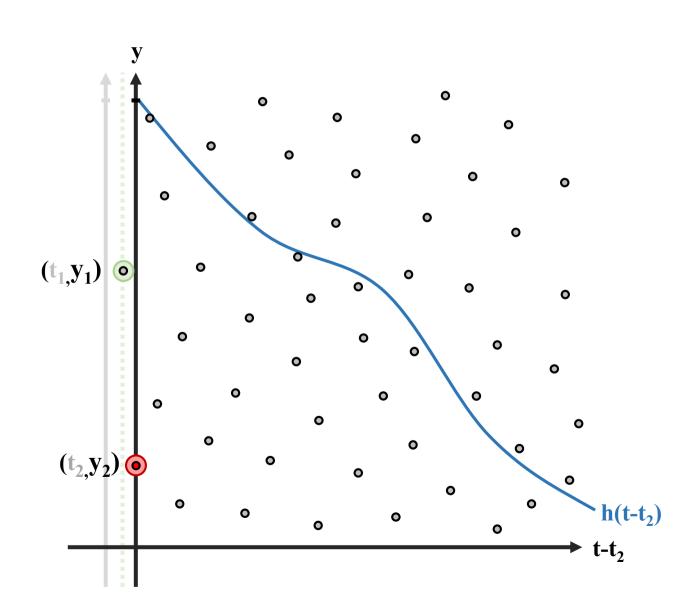


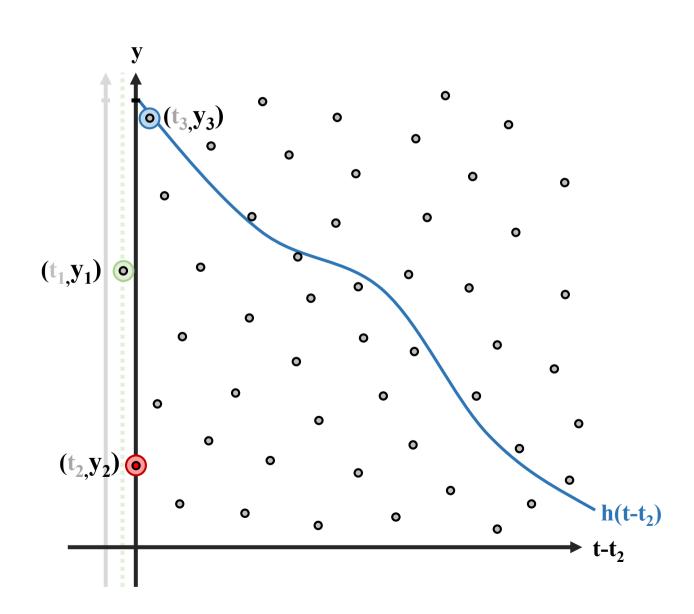


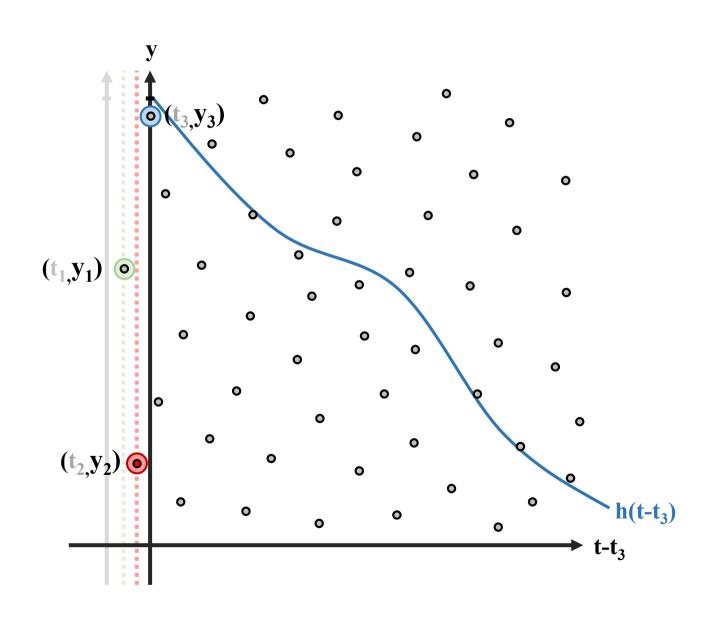


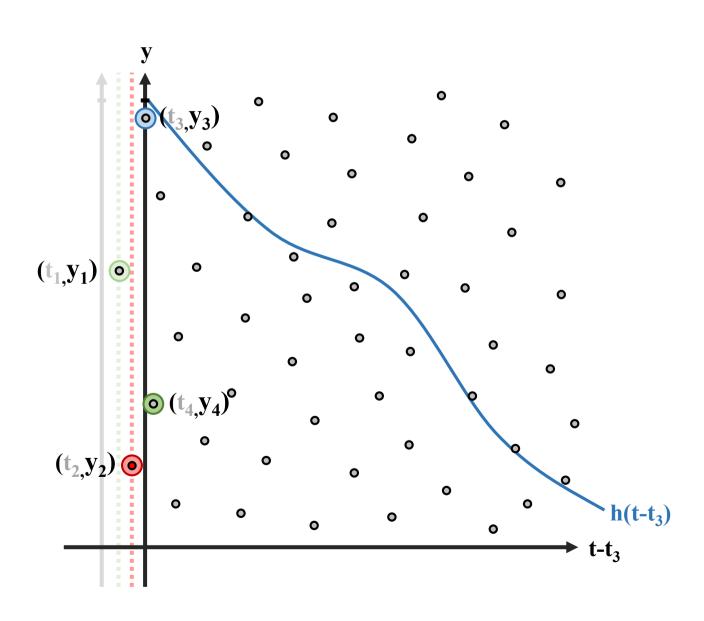


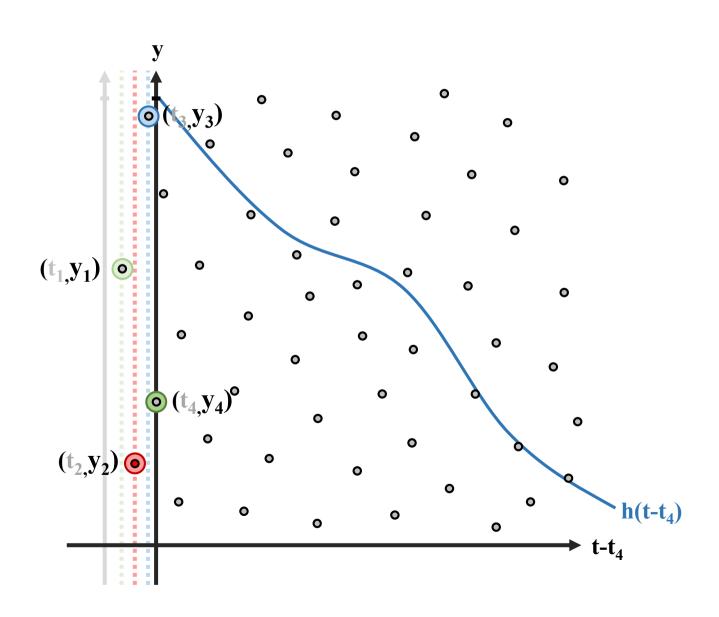


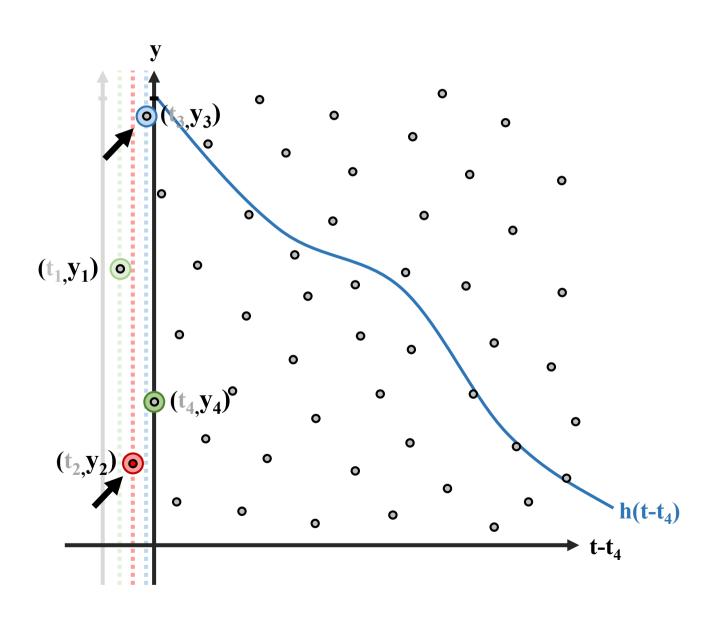












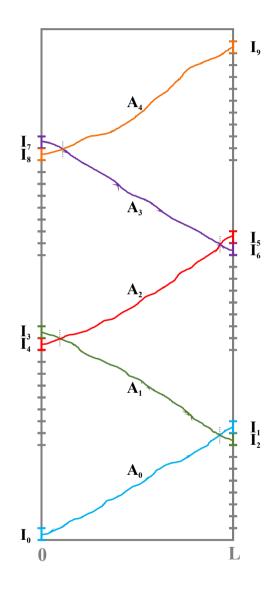
Definition: We say that an event depending on renewal and λ Poisson process points in a finite space time rectangle is *increasing* if it is increasing with respect to the λ Poisson processes of arrows, and decreasing with the renewal processes.

As a consequence:

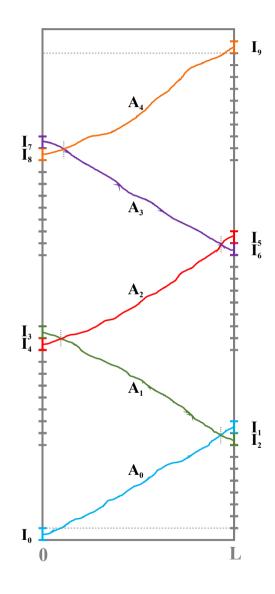
Proposition Assume hypothesis A. Let events A_1, A_2, \ldots, A_n be increasing events on a finite space time rectangle. Then

$$P(\cap_{i=1}^n A_i) \geq \prod_{i=1}^n P(A_i).$$

Allows to use arguments that show similarity with known RSW estimates in percolation.



 $A_0 = \{ \text{ exists crossing from } \{0\} \times [0, \epsilon] \text{ to } \{L\} \times [\tfrac{2}{3}T, \tfrac{2}{3}T + \epsilon] \text{ in } [0, L] \times [0, \infty) \}.$



 $P(\text{ temporal crossing of } [0,L] \times [\epsilon,\epsilon+mT]) \geq P(A_0)^{\frac{8m}{3}+2}.$

Sketch of the proof of Theorem 3

Let
$$0 < \beta < \alpha - 1$$
.

 \bullet P_r : the supremum over the probabilities for the space-time rectangle

$$[0,2^{\beta r}] \times [0,2^r]$$

of either a spatial or a temporal crossing.

The supremum is over all product renewal measures with inter-arrival distribution μ , for the death points starting at times points strictly less than 0. (The starting points or times need not be the same.)

The main ingredient is the following

Proposition Assume $\beta \in (0, \alpha - 1)$, with α as in the statement of main theorem. There exists $\lambda_0 > 0$ so that for $0 \le \lambda < \lambda_0$

$$P_r \stackrel{r \to \infty}{\longrightarrow} 0.$$

The theorem follows (quite easily) from the Proposition.

$$\{\xi_{2r}^{\{0\}} \neq \varnothing\} \subseteq (I) \cup (II) \cup (III),$$

where, letting $R = [-2^{r\beta}/2, 2^{r\beta}/2] \times [0, 2^r]$:

- (I) $\{\exists \text{ path from } (0,0) \text{ to } \mathbb{Z} \times \{2^r\} \text{ in } R\}$
- (II) $\{\exists \text{ path from } (0,0) \text{ to } \{2^{r\beta}/2\} \times [0,2^r]\}$
- (III) $\{\exists \text{ path from } (0,0) \text{ to } \{-2^{r\beta}/2\} \times [0,2^r]\}.$
- \bullet $P((I)) \leq P_r$.

Using the previous FKG type estimate

•
$$P(II) = P(III) \le K^2(P_r)^{1/(2^{\lceil 1/\beta \rceil + 1})} + KP_{r-\lceil 1/\beta \rceil}$$

where K is suitably large (depending on β but not on r).

• (Key estimate) Control P_r through an iterative procedure.

Consider the probability of temporal crossing $(X(s))_{0 \le s \le 2^n}$ of $[0, 2^{n\beta}] \times [0, 2^n]$.

- ullet Take k suitably large (but not depending on n) and consider the restriction each of the 2^{k-1} (even) rectangles $[0,2^{\beta n}] \times [2i2^{n-k},(2i+1)2^{n-k}]$
- Show there must be a crossing (space or time) of smaller but very "similar" scales $2^{\beta(n-k-i)} \times 2^{n-k-i}$ $(i \le 4)$
- ullet Conditioning on the existence of a renewal (cross mark) for each $x\in[0,2^{\beta n}]$ in the previous time interval $[(2i-1)2^{n-k},2i2^{n-k}]$, we have that the probability of the vertical crossing is bounded

$$C(k)(\sup_{n-k-4 \le r \le n-k} P_r)^{1/10}$$

• $0 < \beta < \alpha - 1$ guarantees that the probability of not having a cross for at least one x and at least one of the odd time intervals is small. The renewals bring some sort of 'independence'. We can combine all time intervals to beat power 1/10.

Taking $2^{k-1}>20$ and arguing similarly for the space crossings (easier) one gets if n-k is large

$$P_n \le 2^{-n\frac{\epsilon_0}{2}} + C(k) (\sup_{n-k-4 \le n-k} P_r)^2$$

Out of this it is simple to conclude the result.

Indeed, if we have

$$P_r \le 2^{-r\frac{\epsilon_0}{5}}$$
 for each $n-k-4 \le r \le n-k$ (*)

then

$$P_n \le 2^{-n\frac{\epsilon_0}{2}} + C''2^{-2n\frac{\epsilon_0}{5}} 2^{2(k+4)\frac{\epsilon_0}{5}} \le 2^{-n\frac{\epsilon_0}{5}}$$

for all n large.

Choose λ_0 small so that (*) holds for $n=n_0$ and $\lambda\in(0,\lambda_0)$.

THANKS