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Abstract. This review fo op_recent achievements_ in cneg of the mos
important branches oﬁhe eneral Relativity: physics of Time Machines an:

Physics and Astrophysics of Black holes.

2.1 Introduction

The discussion in this review is organized as follows,

In Section 2 we discuss the physics of wormholes and time machines. Sec-
tion 3 is devoted to the analysis of the membrane paradigm in the black hole
physics. According to this paradigm the event horizon of a black hole looks
for an external observer (outside the black hole) and behaves as a physical
membrane with definite mechanical, electrical and thermodynamical proper-
ties. In Section 4 we discuss astrophysics of black holes and in final Section 5
we analyze the problem of tidal interaction of stars with a supermassive black

hole.
For systematic discussion of the problems see the books: Thorne et al.

(1986), Novikov and Frolov (1989), and Frolov and Novikov (1998).

2.2 Wormbholes and time machines
2.2.1 Nontrivial topology of spacetime

An interesting feature of the General Relativity is possible existence of space-
times with non-trivial topological structure. Wormhole solutions described by
Wheeler (1962) are well known examples of spaces with non-trivial topology.
The simplest example of such a spacetime is an Einstein-Rosen bridge. The
spacetime of an eternal black hole can be considered as the evolution of the
Einstein-Rosen bridge. To the future of the moment of time symmetry the
throat shrinks to zero size and the singularity arises. No causal signal can
propagate through the throat from one asymptotically flat region (R') to an-
other one (R"). This property is directly connected with non-trivial causal
structure of spacetime in the presence of a black hole.

In the general case the wormhole consists of a throat {corridor) connecting
two holes in asymptotically flat space.

In the same mannet; al.ls in the cage of the et black hole in the absence
of matter the throat of the wormhole pinches off so quickly that it cannot be

traversed even by light. It is a generic property of spacetimes with a non-
simply connected Cauchy surface. According to the theorem proved by Gap-
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non (1975): Any ssymptotically flat spacetime with a non-simply connected
Coauchy surface has singular time evolution if it satisfies the weak energy con-
dition. Moreover such singularities arise so quickly that no information CAITY-
ing signal can propagate through a wormhole to the asymptotic region before
creation the singularity. One can formulaie a topological censorship as the
statement that no observer remaining outside the region with strong gravita-
tional field has time to probe the topology of spacetime (Friedman,Schleich,
and Witt (1993)).

For more accurate formulation we shall use the energy condition which is
weaker than weak energy condition. The null energy condition (NEC) is the
requirement that Taﬁl"!ﬂ 2 0, for all null vectors {*. It is implied by each
of the other common positive energy conditions: the weak energy condition,
the strong energy condition, and the dominant energy condition. A spacetime
is said to satisfy the averaged null encrgy condition (ANEC) if the integral
of T,sl®!# is non-negative along every inextendible null geodesic with affine
parameter A and tangent vector [*:

/ Tosl®1Pd) > 0. (5.1)

This condition is evidently weaker then the NEC.

Consider an asymptotically flat spacetime and denote by gammay a time-
like curve with past end point at J~ and future end point in J+ that lies
in a simply connected neighborhood of 7~ U J+. The theorem proved by
Friedman,Schleich, and Witt (1993) reads: If an asymptotically flat, globally
hyperbolic spacetime satisfies the averaged null energy condition , then every
causol curve from J~ to J* can be continuously deformed to gammag. If we
assume that a spacetime is not simply connected then a causal curve beginning
at J~ and passing through a wormhole cannot reach J+.

In order to prevent shrinking of a wormhole and to make it traversable
one needs to fill up its throat with matter violating ANEC. It follows from the
above theorem. This property of traversable wormholes can be easily shown
directly. For any traversable wormhole a two-sphere surrounding one mouth
, a8 seen through the wormhole from the other mouth, is an outer trapped
surface. This implies (since there is no event horizon) that the stress-energy
tensor of such matter 7}, must violate ANEC (1). On the possibility of
existence of matter violating weak energy condition see e.g. Thorne (1993),
Visser (1995), and Flanagan and Wald (1996).

The spacetime with a traversable wormhole (if it only exists) can be trans-
formed into a spacetime with closed timelike curves. Namely it was shown by
Morris, Thorne, and Yurtsever (1988) and Novikov (1989} that closed timelike
curves may arise as a result of the relative motion of the wormhole’s mouths.
This principal possibility to create closed timelike curves in a spacetime where
they originally were absent attracted new interest to the wormhole-like solu-
tions. From more general point of view this result indicates on deep relations
between topological and causal structure of spacetime.

The main features of such spacetimes can be illustrated by considering a
simple model proposed by Morris, Thorne, and Yurtsever (1988). The simplest
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a wormhole is obtained by removing two balls of equal radius from Euclidean
space and identifying their surfaces. The surfaces then become the wormhole’s
mouths. In the process of identification of surfaces their extrinsic curvature
jumps. It means that if such a spacetime is solution of the Einstein equations
there must be a delta-like distribution of stress-energy at the junction between
the two mouths, which violate NEC. In this particular model it is evident,
because any bundle of radially traveling null geodesics that passes through the
wormbole is converging as it enters and diverging as it leaves, and therefore gets
de-focused by the wormbole. One can make the matter distribution smooth
by connecting mouths by a handle of finite length instead of giuing them
together. In what follows we always assume that the length of the handle is
small enough. :

One can construct wormhole spacetimes, so that wormhole’s mouths are
moving along arbitrary chosen world lines, by removing world tubes along
those lines and identifying their surfaces with each other. The junction condi-
tions requires that the intrinsic geometries of tubes’ surfaces must be the same.
This may require a distortion of spacetime geometry near the mouths if they
are accelerated. But the distortion can be made arbitrary small by taking the
value of (acceleration)x (mouth radius) to be small enough (Morris, Thorne,
and Yurtsever (1988), Friedman et al (1990)). Since the mouth’s intrinsic ge-
ometries are the same, the proper time interval between two identified events
on the mouths must be the same as seen through either mouth.

In order to accelerate a mouth one must apply a force to it. It can be
done for example when the mouths are charged (i.e. when there exist flux of
electric field through the mouth). In this case it is sufficient to apply electric
field to one of the mouths, The mouth becomes moving in the external space.
It is possible to show that during this motion the position of the other mouth
i the external space remains unchanged.

One can choose the clocks located near both mouths to be synchronized
in the external space before the beginning of the motion. As the result of the
motion the synchronization in the external space is lost. The moving clock
(measuring proper time near a first mouth) shows less time than the clock
which remains at rest ("twin paradex”). Denote by A7 this time difference. If
A7 > Ljc , where L is the distance between the final positions of the mouths,
a closed timelike curve becomes possible. The region formed by events through
which a closed timelike curve passes is restricted from the past by the future
chronology horizon.

Consider a spacetime with a wormhole in case when the mouths are rotat-
ing one with respect another in the external space (Novikov (1989)). Closed

timelike curves in this model arise for the same reagon as in the above model
with an accelerated mouth. As seen in the exte space there is a dilation

of proper time on the moving mouth relative to the static one, but as seen
through the wormhole there is no such time dilation.

There is even simpler model when the mouths are moving with constant
velocity one with respect the other and closed timelike curves also arise (Mor-
ris, Thorne, and Yurtsever (1988). In this case closed timelike curves are
confined to bounded non-chronal region of spacetime: the region that begins
at the future chronology horizon and ends at the past chronelogy horizon

The formation of non-chronal regions containing closed timelike curves is
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a generic property of spacetimes with wormholes. Generic relative motions
of a wormhole’s mouths will always produce closed timelike curves (Morris,
Thorne, and Yurtsever (1988), as will the gravitational redshift when worm-
hole’s mouths are placed in a generic gravitational field (Frolov and Novikov
{1990)).

In the paper Frolov and Novikov (1990) it was argued that the interac-
tion of a wormhole with classical matter generically generates a non-potential
component of the favitationa.l field. That is why a locally static wormhole
is generically unstable with respect to the processes which transform it into a
‘time machine’. The relative motion of a wormholes mouths also generates a
time gap for the clocks’ synchronization. One can interpret the above results
in the following way. There exist internal relation between topological and
causal properties of a spacetime. The existence of closed timelike curve is a
generic property of multiply connected locally static spacetimes.

2.2.2 Chronology Horizons

In this section we describe some general properties of spacetimes with closed
timelike curves (for more details see (Friedman et al (1990), Hawking (1992),
Thorne (1993)).

Solutions of Einstein equations which allow closed timelike curves have
been known for a long time. The earliest example of such a spacetime is
a solution obtained by Van Stockum (1937), which describes an infinitely
long cylinder of rigidly and rapidly rotating dust. Another well known exam-
ple is GG del (1949) solution representing a stationary homogeneous universe
with nonzero cosmological constant, filled with rotating dust. Closed timelike
curves also present in the interior of the eternal Kerr black hole in the vicinity
of ring singularity.

A spacetime whose closed timelike curves are not eternal can be divided
into chronal regions without closed timelike curves, and non-chronal regions
that contain closed timelike curves everywhere. The boundaries between the
chronal and non-chronal regions are called chronology horizons. Chronal re-
gions end and non-chronal region begins at future chronology horizon. Non-
chronal regions end and chronal region begins at past chronology horizon. A
future chronology horizon is a special type of future Cauchy horizon, and as
such it is subject to all the properties of such horizons. In particular, it is
generated by null geodesics that have no past endpoints but can leave the
horizon when followed into the future. If the generators, monitored into past,
enter one or more compact regions of spacetime and never thereafter leave
them, the future chronology horizon is said to be compactly generated. In a
wormhole model with closed timelike curves the future chronology horizon is
compactly generated. The inner horizon of a Kerr-Newman solution is an ex-
ample of a Cauchy horizon that is not compactly generated. The compactly
genérated chronology horizon cannot form in a spacetime developed from a
spacelike non-compact surface without boundary if the nnll energy condition
holds (Hawking (1992)).

The past-directed generators of the compactly generated future chronology
horizon have no past end points. They will enter and remain a compact region
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C. Hawking (1992) showed that there exist a nonempty set E of generators,
each of which remains in the compact set C in the future direction, as well as
in the past direction. The sets E generically contain at least one closed null
geodesic. More exactly, Hawking (1992) proved that: (i) if £ contains such
a closed null geodesic, small variations of metric preserve this property; (ii)
if E does not contain closed null geodesic, in geometries obtained by small
variation of the metric such curves exist. The generators traced into the
past either wander ergodically around C or they asymptote to one or more
smoothly closed geodesics. In the latter case followed forward in time they
are seen to originate in fountains and spew out of them. That is why Thorne
(1993) proposed to name such closed null geodesics fountains. The Hawking's
result indicates that in the generic case, C will contain such fountains, and
it is likely that generically almost all the horizon generators will emerge from
them (Thorne (1993)).

2.2.3 Possible Obstacles for a *Time Machine’ creation

In order to create a ‘time machine’ by using a wormbole, one need to assume
that there exist principle possibility to make them long living and traversable.
It is impossible without ANEC violation. Moreover ANEC must be vio-
lated near the fountain of any compactly generated future chronology horizon
(Hawking, 1992). It means that it is impossible to create a *time machine’ in
a finite region of space time without violating ANEC.

It is unclear whether it is possible to provide such a violation in phys-
ically acceptable conditions. It has been shown that ANEC is satisfied for
noninteracting quantized scalar and electromagnetic fields in flat spacetime
(Klinkhammer (1992), Folacci (1993)),, and in generic, curved 1+1 dimen-
sional spacetimes {(Wald and Yurtsever (1991)). On the other hand, in 3+1
dimensional spacetime, both non-trivial topology (Klinkhammer (1992)) and
curvature {Wald and Yurtsever (1991}) can induce ANEC violations. Moreover
in the latter paper it was shown that there are generic classes of spacetimes
where quantum effects may violate ANEC. Under these conditions it is im-
possible at least now to exclude possibility such a violation of ANEC which is
required for the ’time machine’ creation.

If there is no eternal traversable wormholes in the Universe in order to
create a 'time machine’ by the proposed mechanism one need at first to create

a wormhole. In the absence of wormholes the space initially (at some space-
like surface S} was simply connected. If a wormhole is created, then a later
spacelike surface 57 has different topology. If the processes connected with a
‘time machine’ formation are restricted to a bounded in space region, then it
is natural to assume that one can surround this region by a timelike cylinder T
which intersect the spacelike surfaces § and &' in compact regions St and Sf.
of different topology. In other words the topology change occurs in a space-
time region My bounded by S, &', and T. In the absence of singularities and
impossibility for Mr to spread to infinity Mr is compact. Hawking (1992)
proved that the ch of spatial topol inside My is impossible until it
contains closed timelike curved. This is the generalization of the well known
theorem by Geroch (1967). This result means that that even creation of a
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wormhole cannot be possible without creation a *time machine’. Whether it
is forbidden by some fundamental physical laws remains unclear.

There is another danger: quantum instability of the compactly generated
future chronology horizon. We will not discuss this problem here (see Frolov
and Novikov (1998)).

2.2.4 Physics in the Presence of *Time Machines’

Here we discuss whether and how the laws of physics can deal with closed
timelike curves (CTCs).

Usually one worries that the laws of physics cannot deal reasonably with
a time machine. The crucial problem here is the problem of causality. The
existence of CTCs allows one to travel into the past. At first sight it inevitably
leads to the possibility of changing the past, thereby producing causality vio-
lations. But it is not so.

In the works: Novikov (1983), Zeldovich and Novikov (1975), Novikov
and Frolov (1989), Friedman et ol 1990, Novikov (1992) the principle of self-
consistency (PSC) was declared and discussed. The meaning of this principle
is the following.

In the case of an open timelike curve any event X divides other events on
this curve into two parts: future events and past events with respect to X. All
past events can influence X, but future events canoot. On a CTC the chaice of
the event X divides other events on the curve into future events and past ones
only locally. In this case events which locally are in the future with respect to
X can influence the event X circularly around the CTC. There is no global
division of events on the CTC into future and past. The future influences the
present around the closed timelike line, with a local directed into the future
part of a light cone at each event of the closed curve. Not only the future is
the result of evolution of the past but the past is the result of the future also,
All events in a spacetime with CTCs must be self-consistent. According to the
principle of self-consistency all events on CTCs influence each other around
the closed timelike line in a self-adjusted way.

More precise formulation of this principle is: the only solution to the laws
of physics that can occur locally in the real Universe are those which are

lobally self-consisteni. The PSC by fiat forbids changing the past. All events
appen only once, and cannot be changed.

In order to demonstrate how this principle works we shall consider the so-
called “billiard ball problem”, (Friedman et al {1990), Echeverria, Klinkham-
mer, and Thorne (1991), Mikheeva and Novikov (1993)) which is the following:
a solid perfectly elastic ball moves relative to the mouths of the wormhole. Its
speed is assumed to be small compared with speed of light, so it can be treated
non-relativistically. The ball enters the wormhole through mouth B, appears
fror]r; A cl)? the past and continuing its motion, it can encounter and collide
with itself,

At first glance there is a “paradox” in this problem )the so-called Polchinski
paradox” (Polchinski (unpublished)). The initial position and velocity of the
ball are chosen in suck a way that the ball moves along the trajectory o,
enters mouth B, and exits from mouth A before it entered into B. The ball
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continues its motion along the trajectory az!. The timing is just right for the
ball to hit itself at the point Z, knocking its “younger” self along trajectory a3
and thereby preventing itself from ever reaching mouth B. Such an evolution
is not self-consistent and impossible. It is not the solution of the evolution
equations. _

The mistake (the reason of the “paradox”) is obvious: when at the begin-
ning of our discussion we continued the trajectory op after point Z, we did
not take into account the influence of the impact and considered the motion
of this ball along the trajectory as without taking into account this impact.
tThhis mgans that we did not take into account the influence of the future on

e past.

In the paper Echeverria, Klinkhammer, and Thorne (1991) the authors
demonstrated that for initial data which give self-inconsistent “solutions” there
are also self-consistent solutions. The initial data (initial position and velocity
of the ball) are the same as in the previous consideration. The part of trajec-
tory a; before the collision with the “older” self coming from the future is the
same. This “older” ball moves along trajectory £; which is a little different
from the one ay. The “older” ball on B2 strikes itself on «y gently, deflecting
itself into slightly altered trajectory £,. This altered trajectory (3, takes the
ball into the mouth B at a slightly altered point compared to the point in

the self-inconsistent congideration. The ball exits from the mouth A before it
went into mouth B, and moves along the trajectory s to the collision event.

This solution is ?e -consistent. . . .
The general logic of construction of the self-consistent solutions looks lLike

the following. Let us forget for a moment that the “older” ball is from the
future and, during its motion after appearance from the mouth A we will treat
it as a usual ball independent from the “younger” one. Let us suppose that
we know the moment i, place £; of its appearance from the mouth A and its

velocity V; at t,. We can treat them as “initial conditions” for the “older” ball.
Now using the standard physical laws we can calculate the collision between
the “younger” and “older” balls, change of the trajectory of the “younger” one
and the place Z;, velocity V; and the moment #; of its arrival to the mouth

B. Of course 7, V, and ¢; are function of Z, ‘72 and 25 (as well as of the
initial data for the “younger” ball). Now we must remember that the “older”

ball is the “younger” one returned back from the future and that 3, V> and
13 are not the “initial conditions” but the consequence of the motion of the
“younger” ball. Thus, because we know the laws of passage through the time
machine, we we can express T3, V5 and t; in the terms of &3, V; and ¢;. Finally
we have the system of equations, allowing us to calculate all motions if the
initial data were specified.

Next questions arise: the first about the existence of the solution to this
system for any initial conditions and the second about the uniqueness of the

solution.
The positive answer to the first question was obtain by Echeverria, Klinkham-

mer, and Thorne (1991) for an ideal elastic billiard ball and by Mikheeva and
Novikov (1993) for inelastic one. The answer to the second question is not

1The trajectory og is well defined if the trajectory ¢ is given (see Echeverria,
Klinkhammer, and Thorne (1991)).
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trivial. In the paper by Echeverria et al (1991) it has been demonstrated that
there could be infinite number of self-consistent solutions in the general case,

These solutions include a number wormhole traversals. -
For some initial data there is only one solution. For example a ball initially

at rest far from the wormhole has only one solution to its equations of motion:
namely it remains forever at rest. There are arguments also that there is
only a single solution for any ball with an with an initial speed small enough
and an initial path of motion that, if extended forever, remains far from the
wormhole. Echeverria, Klinkhammer, and Thorne (1991) tried to find initia)
data for which there is not self-consistent solutions at all, but none were found.

What does the multiplicity of the solutions mean? Does it have any phys-
ical reason or it means that the laws of physics cannot deal with the time
machine in a reasonable way?

Once again the answer is not trivial. The point is that Physics is quantum
mechanical at heart, not classical. If one considers the classical problem as
a limiting case of the quantum one, then the Cauchy problem turns out to
be well posed in the formalism of quantum mechanics (Klinkhammer and
Thorne (unpublished)). In classical (not quantum mechanical) physics more
complicated interacting system than the billiard ball have been investigated
(see, for example, Novikov 1992, Lossev and Novikov 1992, Novikov 1993). It
was though, at first, that for some initial data there might be no self-consistent
evolution. But so far no clean example of such thing have been exhibited,

In the work by Carlini ez al. (1995) it was demonstrated that for a billiard-
ball problem the principle of self-consistency directly follows from the principle
of least action, in which the initial and final positions of the ball are fixed. This
result motivates the authors to formulate the conjecture that the “principle
of self-consistency” is a consequence of the “principle of least action” in the
general case for all physical phenomena, not only for the simple mechanical
problem considered there. Carlini and Novikov (1996) extended the analysis
to the case of point-like “billiard balls” moving with relativistic velocity. It
was shown that for the case under consideration the only possible trajectories
for which the action is extremal are those which are globally self-consistent.
This gives additional support for the conjecture.

2.3 Physics of Black Holes.

2.3.1 Membrane paradigm in black hole physics

A black hole is region in space-time from which no signal can escape to an
external observer. A black hole’s boundary is a so called event horizon.

After the gravitational collapse of a celestial body and formation of a black
hole the external gravitational field of it asymptotically approaches a standard
equilibrium configuration known as the Kerr-Newman field and characterized
by just three numbers: mass, angular momentum and charge,

Black holes reside in curved space. If a black hole has nonzero angular
momentum then anything near a black hole will be dra along by the
vortex gravitational field. In this section I will consider a hole without
electric charge (Kerr black hole). The horizon’s surface area can be written in
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terms of its mass M and angular momentum J = aM, where a is an angular
momentum per unit mass (¢ =1, G = 1}:

A = 4n{r} +a?), (5.2)

rg=M+vVM?—-a2 (5.3)

The rotational energy, or corresponding mass Mye, of a Kerr black hole is the
following

1/2

Mgt = M — [%M (M+ \/MT?)] . (5.4)

This rotational energy (energy of the vortex gravitational field) can be ex-
tracted (in principle) from a black hole.

The black hole is a clot of gravity, there is not any real matter on the hori-
gon. In spite of this fact the horizon looks for an external observer (outside
the black hole) and behaves as a physical membrane which is made from a
two-dimensional viscous fluid with definite mechanical, electrical and thermo-
dynamic properties. .

This remarkable viewpoint is known a3 the membrane paradigm (see Thorne
et al (1986) for a review). According to this paradigm the interaction of the

horizon witlﬁ the external uni_verge i3 described in terms of familiar laws for
the horizon fluid, e.g. the Navier-Stokes equation, Maxwell’s equations, a tidal

force equation, and the equations of thermodynamics. It is very important to
emphasize that the membrane paradigm is not an approximation method or
some analogy. It is an exact formalism which gives exactly the same results as
the standard formalism of the General Relativity. Because the laws governing
the horizon’s behavior have familiar forms, they are powerful for understand-
ing intuitively and computing quantitatively the interaction of black hoies with
complex environments.

In subsequent parts of this section we will consider some manifestations of
the physical properties of the black hole’s membrane, that resided in the three
dimensional space.

2.3.2 Mechanical properties of the horizon’s membrane

According to the membrane formalism, from the point of view of an external
observer the hole’s membrane has definite surface mass density and the surface
pressure and viscosity.

The formula for the mass density is

_ d(AA)
T AAdt’
where 8% is a fractional change of area of a surface element per unit time

of an observer at infinity. One can see that for the case of a black hole in
equilibrium (for example, a nonrotating (Schwarzschild) or a Kerr hole in the

_ 1 H H
=——gth®, 0 (5.5)



98

empty space) 3 = 0. The value of 8¥ is always non-negative ,consequently
3- = 0 is always non-pogitive.
H

. There is surface pressure pf in the membrane. For a Schwarzschild hole

it is:
1 dyne\ /M,
H_o _* _ o [10128¥7¢) (Mo

= (10 cm)(M). (5.6)
iFrom the point of view of the membrane formalism the gravity of a black
hole in equilibrium is produced by p¥.

The horizon’s shear viscosity ¥ and the horizon’s bulk viscosity ¢# are
correspondingly:

1
7 = Tox =~ 1037%, (5.7)
1
H_. __~ _ _ 1037 9
¢ 167 10 sec’ (58)

Because the membrane paradigm regards a black hole as a two dimensional
membrane with familiar mechanical properties it is rather easier to understand
intuitively and compute quantitatively what happens with a black hole under
some definite conditions. Let us consider a few examples.

If a black hole occurs as a result of gravitational collapse of an asymmetric
celestial body (without rotation), then a nonspherical hole arises at the first

moment. The hole’s membrane is deformed and there is no balance between
the surface pressure of t?ﬁe membrane and its gravity. the membrane vi-

brates and radiates gravitational waves. The waves carry away the energy of
the membrane deformation. This together with the membrane viscosity makes
the horizon settle down into an absolutely spherical equilibrium shape.

Another example is a shape of the membrane of a rotating black hole.
Centrifugal forces make a hole’s membrane bulge out at its equator. The
balance between the surface pressure, gravity and centrifugal forces determines
the shape of the horizon’s membrane.

Let us consider one very unusual property of the horizon’s membrane. We
emphasized above that the differential equations which describe the interaction
of the horizon with the externa! universe are familiar physical laws (e.g. the
Navier-Stokes equation and so on). But the solutions of the equations are
determined also by the boundary conditions. In the case of standard physics
the boundary conditions must be imposed at some initial moment or in the
infinite past. That is not so for the hole’s horizon! The point is that the
horizon is a boundary between light-speed signals that can and those that
cannot ever escape to spatial infinity. But this fact depends on the processes
in the future, not in the past.

Whether a signal can escape depends on the region of spacetime to the
future of the signal’s source. It means that the motion of the horizon at any
moment of time depends not on what has happened to the horizon in the past
but what will happen to the horizon in the future.
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This prop can be illustrated by the problem of a free fall of a thin
spherical shell of a matter of mass AM into a Schwarzschild hole with mass
M. The spacetime ieometry is that of Schwarzschild both interior to the shell
- and outgide it. In the interior the Schwarzschild mass is M and outside it is

ill] + KM . Now the light-speed signals with world lines at r = 2M cannot
be the boundary of the non-escape region because these signals and outgoing
w just outside r = 2M will get caught and pulled into the hole by the
ed gravity of the shell when in the future the shell passes through them.
The real boundary is generated by light-speed signals world lines of which
are just outside of the surface r = 2M. In the past, long before the shell
arrives at the horizon this surface practically coincides with r = 2M. Then,
a8 the shell nears it the surface (which is the real boundary, meaning the real
horizon) starts to expand. This is because the world lines of its generators go
farther an farther from r = 2M. This is their property in the Schwarzschild
* spacetime, and it does not depend on the approaching shell. When the shell
finally passes through it, the added shell’s gravity starts influence the motions
of the generators of the surface, the horizon suddenly stops expanding and
freezes at r = 2(M + AM). These behaviors of the horizon are dictated by
the properties of propagation of the light-speed signals which generate the
horizon and which have the property to propagate at r = 2(M + AM) after
crossing with the shell. Thus, this bebavior of the horizon before crossing with
the shell (its expansion) depends on the events in the future (the crossing with
the shell).
One refers to this dependence of future events as the “theological” nature
of the horizon (see Thorne et al 1986). I would like to emphasize that these

behavjors looks as if the hole’s membrane lives in time which flows in the
opposite direction: from the future into the past. Indeed in this case the

change of the size of the horizon looks very natural and causal. If we accept this
point of view, we should consider the extraction of the shell from the hole, and
Just after this extraction of the shell from the membrane at r = 2(M + AM),
the horizon starts contracting and settles down to r = 2M., We will see in
Section 3 that thiz unusual property, namely, “feeling” information from the
infinite future of the exte observer, is a characteristic property not only of
the horizon but also of the interior of a black hole.

2.3.3 Black-Hole Electrodynamics

A black hole horizon behaves as an electrically conducting sphere. To under-

stand this let ys ask what c%uld be the external manjfestation of the electric
conductivity of a body in a flat spacetime. The simplest manifestation 1s the

following. If one brings a positive electric charge close to a metal sphere then
free electrons on the sphere’s metal surface will be displaced with respect to
the ions by the Coulomb electric forces. It polarizes the sphere. As a result,
the electric field lines form a characteristic configuration in the space around
the sphere. Now if one moves the charge pa.rallef‘t];-ro the surface of the sphere
from one position to another one, the characteristic configuration of the elec-
tric lines comes to a new place with some delay. This delay is determined by
the resistivity of the sphere’s metal surface. It turns out that if one brings
a charge close to a non-spinning black hole, there is a similarity between the
picture of the field lines in the vicinity of the black hole and the analogous
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picture in the vicinity of a metal sphere in a flat spacetime. Now the curvature
of spacetime distorts the field line rather than displacement of real charges on
the horizon. Nevertheless, it looks like the field of the charge polarizes the

horizon.
If one moves the charge parallel to the hole’s horizon to another position,

then the configuration of the electric lines will settle down at the new place
with some deli[;rr Now it is determined by the finite time of propagation
of electromagnetic signals. Nevertheless one can interpret it as an e%gective
resistivity of the horizon.

In general one can say that a horizon’s membrane behaves as a metal
sphere with a surface resistivity equal to Ry = 47 = 377ohms.

The membrane paradigm gives insight into possible behaviors of rotating
black holes in interaction with magnetized plasma. We will draw an analo
with a dynamo. In its rotor the motion of wire coils in a magnetic field
produces an electromotive force compelling the charges to flow :ﬁough the
conductor. A black hole is also a special dynamo of great size. If a spinnin
black hole is immersed in an external magnetic field, a powerful electric ﬁelg
will also develop in its vicinity. The magnetic field is created by the interstellar
gas flowing into a black hole, The magnetic field lines will tend to rotate along
with the spinning black hole. The motion of any magnetic field generates
an electric field. In the case of a rapidly rotating, magnetized black hole,
the electric field generated near its edges can produce an enormous voltage
difference between the poles of the hole and its equatorial region:

AV == (10%volts) (%) (1051{4@) (wa) ) (5.9)

where B is the magnetic field in the vicinity of the black hole. It is as though
the spinning black hole was a huge battery. The electric field is responsible

for accelerating the charged tpzu-ticles of the plasma and causing them to move
along the magnetic lines of force. The total power output is
erg a M B )
= [10% =2 [ — , 1
P ( 0 sec) (M) (IOQM@) (104(? (5.10)

Probably this mechanism is the main “engine” of the active galactic nuclei.
2.3.4 Thermodynamics of black holes

i From many aspects of the thermodynamics of black holes, I will discuss the
problem of the black hole’s thermal quantum radiation and the related problem
of the thermal atmosphere of a black hole.

S.Hawking (1974) claimed that a black hole should emit thermal radiation

with femperature

' R LAY MG))
Ty = oM~ (10 K)(M : (5.11)

How, in simple physical terms, could one understand that a black hole be-
haves like an ordinary body with temperature Ty. A key insight into thermal
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emission from a hole come from theoretical discoveries in the mid-1970s (see
Unruh, 1976). The crucial point is the existence of the event horizon for some
definite classes of observers. For example, an accelerated observer in an empty
spacetime has a horizon. This observer cannot receive information from the
region beyond the horizon. The virtual particles’ vacuum fluctuation waves
are not confined solely to the region above the horizon; part of each fluctuation
wave is beyond the horizon and part is within the region which the observer
can see. According t0 quantum mechanics this principle lack of information
about vacuum fluctuation waves leads to the conclusion (for an accelerated
observer) that they are real waves. As a result, this observer is bathed in a
perfect bath of thermal radiation with temperature T' = ha/{2nk), where a is
the observer's acceleration. Since a static cbserver just above a Schwarzschild
horizon can be viewed as analogous to an accelerated observer in flat space-
time with acceleration @ = ¢?/z, where z is the distance from the horizon, such

an observer should feel himself bathed in thermal radiation with local tem-
perature T = A/(2nkz). This thermal radiation forms a thermal atmosphere

of the hole. The radiation, climbing up t_h.rough the hole's gravitational field,

2
would be redshifted by a factor (1 - 2—?—)1'{ . It will emerge with temperature

Tx. Most of the photons and other icles fly upward a short distance and
are then pulled back down by the hole’s enormous gravity. A few of the parti-
cles manage to escape the hole’s gravitational grip and evaporate into space.
These particles form the Hawking radiation.

Note that a free falling observer does not feel this thermal atmosphere. He
“sges” only vacuum fluctuations to consist of pairs of virtual particles.

The process of the Hawking quantum evaporation is very slow. The total
lifetime is proportional to the cube of M. For a 20 solar mass black hole it is
107%years.

In principle, the interactions of a black hole with the external Universe
can change the process of extraction of the thermal energy from a black hole
atmosphere drastically (see the review in referenced books).

2.4 Astrophysics of black holes

Do black holes exist in the Universe or are they only an abstract concept of the
human mind? In principle, a black hole could be built artificially. However,
this meets such grandiose technical difficulties that it looks imposstble, at least
in the immediate future. In fact, the artificial building of a black hole looks
even more problematic than an artificial creation of a star. Thus we have to
conclude that the physics of black holes, as well as the physics of stars, is the
physics of celestial bodies. Stars definitely exist, but what may one say about
the existence of astrophysical black holes?

Modern astrophysics deals with three types of black holes in the Universe:
1) stellar black holes, that is black holes of stellar masses, that were born when
massive stars died;
2} supermassive black holes with masses up to 10° M, and greater at centers
of galaxies (Mg = 2 x 10%3g is the mass of the Sun).
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These two types of black holes have been discovered. The third possible type
of astrophysical black holes - primordial black holes will be discussed in sub-
section 4.5. Qur main attention in Section 4 is focused on the possible obser-
vational manifestation of black holes.

2.4.1 The origin of stellar black holes

“When all the thermo-nuclear sources of energy are exhausted a sufficiently
heavy star will collapse™ — this is the first phrase of the abstract of a remarkable
paper by Oppenheimer and Snyder (1939). Every statement of this paper
accords with ideas that remain valid today (including the terminology). The
authors conclude the abstract by the following sentence: “... an external
observer sees the star shrinking to its gravitational radius.” This is the modern
prediction of the formation of black holes when massive stars die.

How heavy should a star be to turn into a black hole? The answer is not
simple. A star that is not massive enough ends up either as a white dwarf
or a neutron star. There are upper limits on the masses of both these types
of celestial bodies. For white dwarfs it is the Chandrasekhar limif, which
is about (1.2 — 1.4) x My. For neutron stars it is the Oppenheimer- Volkoff
himit. The exact value of this limit depends on the equation of siate at matter
density higher than the density of nuclear matter pp = 2.8 x 1014g cm—2 . The
modern theory gives for the maximal mass of a non-rotaiing neutron star the
estimate (2 — 3) X M. Rotation can increase maximal mass of a non-rotating
neutron star ounly slightly up to 25%. Thus one can believe that the upper
mass limit for neutron stars should not be greater than My ~ 3Mg,. If a star
at the very end of its evolution has mass greater than My it must turn into a
black hole. However this does not mean that all normal stars (on the “main
sequence” of the Herzsprung-Russell diagram, with masses M > M, are black
hole progenitors. The point is that the final stages of evolution of massive
stars are poorly understood. Steady mass loss, catastrophic mass ejection and
even disruption at supernovae explosions are possible. These processes can
considerably reduce mass of a star at the end of its evolution. Thus the initial
mass of black hole progenitors could be essentially greater than M,.

There are different estimates for the minimal mass M, of a progenitor star
that still forms a black hole. Uncertainty is M, =~ (10 — 40)M and even
more. Note that the evolution of stars in close binary systems differs from
the evolution of sqle stars because of mass transfer from one star to another.

The conclusions about masses of black hole progenitors in this case could be
essentially different.

One can try to estimate how many black holes have been created by stellar
collapse in our Galaxy during its existence. The estimates give the number of

the order 10°.

2.4.2 Disk accretion onto black holes

For the purpose of finding and investigating black holes, two specific cases
of accretion are of a particular importance: accretion in binary systems and
accretion onto supermassive black holes that probably reside at the centers of
galaxies. In both cases the accreting gas has big specific angular momentum.
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As a result the gas elements circle around the black hole in Keplerian orbits,
forming a disk or a torus around it. Viscosity plays a crucial role for the
accretion. It removes angular momentum from each gas element, permitting
it to gradually spiral inward toward the black hole. At the same time the
viscosity heats the gas, causing it to radiate. Probable sources of viscosity
are turbulence in the gas disk and random etic fields. Unfortunately,
we are not near to a good physical understanding of the effective viscosity.
Large-scale magnetic fields can also play an important role in the physics of

accretion. . . .
The properties of the accreting disk are determined by the rate of gas

accretion. An important measure of any accretion luminosity of a black hole
is provided by the Eddington critical luminosity

- - serg) My
Lg = 4nGMyppmpefor = (1.3 x 10 . ) i (MM) .. {5.12)

Here Mj, is the mass of a black hole, 4 is the molecular weight of electron,
m, is the rest mass of the proton, and o is the Thomson cross section. It is
the luminosity at which the radiation pressure just balances the gravitational
force of the mass Mj for a fully ionized plasma.

; 1”\ useful measure of the accretion rate M is the so-called “critical accretion
rate”:

Mg = Lgc™?, (5.13)

where Lg is given by equation (12). We shall use the dimensionless expression

. = M/Mg. The first models of the disk accretion were rather simple.
They focused on the case of moderate rate of accretion 7 < 1. Subsequently
theories for i ~ 1 and m » 1 were developed. They take into account
complex processes in radiative plasmas and various types of instabilities.

The source of luminosity for disk accretion is the gravitational energy that
is released when gas elements in the disk spiral down. Most of the gravita-
tional energy is released, generating most of the luminosity, from the inner

arts of the disk. According to the theory for these simplest models the total
uminosity of the disk is the following

. 3 x wsse_zg IF’%:WE , nonrotating hole , (5.19)
= Ix 10379_;5 W:U%W , maximally rotating hole . ]

The accretion rate M is an arbitrary external parameter, which is deter-
mined by the source of gas (for example, by the flux of gas from the upper

atmosphere of the companijon star in a binary system). We normalized M by

the value My = 10~®M_/yr because this is probably the typical rate at which
a normal star is dumping gas onto a companion black hole. In this model
the accretion gas is assumed to be relatively cool, with its temperature much
less than the virial temperature corresponcﬁng to the potential energy in the
gravitational field. As estimates show, a geometrically thin disk {with heights
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h < r) might be formed under these conditions. This is the so-called standard
disk model. In this model the electron and ion temperatures are equal, and
the disk is effectively optically thick. The temperature of the gas in the inner
parts of the disk reaches T =~ 107 — 10%K. In this region electron scattering
opacity modifies the emitted spectrum so that it is no longer the blackbody
specirum. Instead, the total spectrum of the disk radiation is a power law
F ~ w'/3 with an exponential cut off at high frequencies. The innermost
regions of such “standard” disks are probably unstable. The thin accretion
disk model is unable to explain the hard spectra observed in accretion flows
around black holes in many observable cases.

A few types of hot accretion flow models have been proposed. Among
them a model with a hot corona above a standard thin accretion disk. In
another model the ions in the inner region are hot 7} = 10! K but the electrons
are considerably cooler 7, ~ 10°K. This inner disk is thicker than in the
“standard” model and produces most of the X-ray emission. The models with
hot jons and cooler electrons are optically thin.

Further development of the theory of disk accretion led to more sophisti-
cated models. It have been demonstrated that when the luminosity reaches
the critical one (corresponding to i = M /M, of the order of unity) radiation
pressure in the inner parts of the disk dominates the gas pressure and the disk
is thermally and viscously unstable. For especially big 7z > 80 the essential
part of the energy of the plasma is lost by advection into the black hole horizon
because the radiation is trapped in the accretion gas and is unable to escape.
This process stabilizes the gas flow against perturbations. Advection can also
be important for smaller 7. For high mass accretion rates the height of the
accretion disk becomes comparable to its radius. In modern models the radial
pressure gradients and the motion of gas elements along radius are taken into
account. In the innermost parts of tﬁe disk and down to the black hole the
flow of gas supersonic.

Recently, a new class of optically thin hot disk solutions has been discov-
ered. In this model the most of the viscously dissipated energy is advected
with the accreting gas, with only a small fraction of the energy being radi-
ated. It is because the gas density is so low that the radiative efficiency is
very poor. These models were named advection-dominated. They have been
applied successfully to a few concrete celestial objects.

In conclusion we note that in some models_of disk accretion electron-
positron pair production can be important. We believe that new mode

involving recent achievements of plasma physics will play a key role in the
maodern astrophysics of black holes.

2.4.3 Evidence for Black Holes in Stellar Binary Systems

Probably the best evidence that black holes exist comes from studies of X-ray
binaries. The arguments are as follows:

1. The X-ray emitting object in a binary system is very compact, and
therefore cannot be an ordinary star. Thus it is either a neutron star or
a black hole. This argument comes mainly from analysis of the features
of emitted X-rays.
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2. Analysis of the observational data allows one to determine the orbital
motion in the binary system makes it possible to obtain the mass of
the compact object. The data on the observed velocity of the optical
companion star is of the most importance. Note that the Newtonian
theory is always sufficient for the analysis. The technique of weighing
stars in binaries is well known in astronomy. If the mass of the compact
component is greater than the maximal possible mass of neutron stars
Mg = 3M;, (see Section 4.1), then it is a black hole.

It is worth noting that this evidence is somewhat indirect because it does
not confront us with the specific relativistic effects that occur near black holes
and which are peculiar to black holes alone. However, it is the best that
modern astronomy has proposed so far. In spite of these circumstances, we
believe that the logic of the arguments is reliable enough.

According to the generally accepted interpretation, we have the necessary
observational confirmation only for a few systems at the present time, For
these systems, we have strong reasons to believe that the compact X-ray
emitting companions are black holes. Some characteristics of these leading
black hole candidates are summarized in Table 1 faccording to Cherepashchuk
{(1996)).

The most plausible masses of compact objects in these systems are consid-
erably larger than My =~ 3My. The strongest candidate are those which have
a dynamical lower limit of the mass of the compact object (or so-called mass
Junction f(M)) greater than 3My. ;From this point of view the strongest
candidates are GS 20334338 (f{(M)=6.5Mg), GS 2000+25 (f(M)=5Mp), and
XN Oph 1977 (f(M)=4M).

The total number of systems that are frequently mentioned as possible
candidates for black holes of stellar mass is about 20. All seriously discussed
candidates a re X-ray sources in binary systems. Some of them are persistent,
other are transient. Begelman and Rees (1996) summarize the present status
as follows: “There is also overwhelming evidence for black holes in our own
galaxy, formed when ordinary massive stars die, each weighting a few times
as much as the Sun”. Most of experts now agree with this unambiguous
conclusion.

During the more than 25 years since the discovery of the first black hole
candidate Cyg X-1 only a few new candidates have been added. This is in
contrast to the rapid increase of the number of identified neutron stars. At
present many hundreds of neutron stars have been identified in the Galaxy.
About 100 of them are in binary systems. One might conciude that black holes
in binary systems are exceedingly rare objects. This is not necessarily true,
however. The small number of identified black hole candidates may as well
be related to the specific conditions which are necessary for their observable
manifestation.

According to estimations the evolutionary stage when a black hole binary
continuously radiates X-ray may last only 10 years. We can thus detect it
only during this short period. In effect, the population of black-hole binaries
may be much larger than what we can presently observe. Such systems may
be as common as neutron star binaries.
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Table 2.1: Black-hole candidates in binary systems [Cherepashchuk
(1996)].

SPecfrEHype Orbltal Mass of the | Mase of the X-ray
System the optical compact optical lumnosxt
companion }dm) companion | companion (erg/seJ
_ {in Mp) (inM)

09.7Tab 56 7-18 20-30 ~8 X 1
(3’ 1357 Cyg)
LMC X-3 B(3-6)II-III | 1.7 7-11 36 ~ 4 x 1038
LMC X-1 O(7-9)111 4.2 410 18-25 ~ 2 x 10%
A0620-00 K(5-N\V 0.3 517 ~0.7 < 10%
(V616 Mon)
GS 2023+338 | KOIV 6.5 10-15 0.5-1.0 > 6x10%
(V 404 Cyg)
GRS 1121-68 K{3-5)V 0.4 9-16 0.7-0.8 < 10%8
(XN Mus 1991)
GS 2000+25 K37V 0.3 5.3-8.2 ~ 0.7 < 10%8
(QZ Vul)
GRO J04224-32 | M(0-4)V 0.2 2.5-5.0 ~ 0.4 < 10°%8
(XN Per 1992=
=V518 Per) ,
GRO J1655-40 | F5IV 26 4-6 ~23 < 1078
(XN Sco 1994)
XN Oph 1977 | K3 0.7 57 ~0.8 < 10%8
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2.4.4 Supermassive Black Holes in Galactic Centers

Since the middle of this century astronomers have come across many violent
or even catastrophic processes associated with galaxies. These processes are
accompanied by powerful releases of energy and are fast not only by astronomic
but also by earthly standards. They may last only a few days or even minutes.
Most such processes occur in the central parts of galaxies, the galactic nuclei.

About one percent of all galactic nuclei eject radio-emitting plasma and gas
clouds, and are themselves powerful sources of radiation in the radio, infrared,
gamma, and especially, the “hard” (short wavelength) X-ray regions of the
spectrum. The full luminosity of the nucleus is in some cases L = 10%7erg/s
and millions of times the luminosity of the nuclei of more quite galaxies, such
as ours. These objects were called active galactic nuclei (AGN). Practically
all the energy of activity and of the giant jets released by galaxies originates
from the centers of their nuclei.

Quasars form a special subclass of AGN. Their characteristic property is
that their total energy release is hundreds of times greater than the combined
radiation of all the stars in a large galaxy. At the same time the average liar
dimensions of the radiating regions are small: a mere one-hundred-mi ionth
of the linear size of a galaxy. Quasars are the most powerful energy sources
registered in the Universe to date. What processes are responsible for the
extraordinary outbursts of energy from AGN and quasars?

Learning about the nature of these objects involves measuring their sizes
and masses. This is not easy at all. The central emitting regions of AGN and
quasars are so small that telescope view reveals them just as point sources of
light. Fortunately quite soon after the discovery of the quasar 3C 273 it was
shown that its brightness changed. Sometimes it changes very rapidly, in less
than a week. After this discovery, even faster variability (at timescale of a few
hours or less) were detected in other galactic nuclei. From these variations
one could estimate the dimensions of the central parts of the nuclei that are
responsible for radiation. The conclusion was that these regions were not more
than a few light-hours in diameter. That is, they are comparable to the solar
system in size.

In spite of the rather small linear dimensions of quasars and many galactic
nuclei, their masses turned out to be enormous. They were first estimated
using formula (12). For quasistatic objects the luminosity cannot be essentially
greater than Lg. A comparison of the observed luminosity with the expression
(12) gives an estimate of the lower limit of the central mass. In some quasars
this limit is M = (1 — 10?) x 107 My. These estimates are supported by data
on the velocities within the galactic nuclei of stars, and gas clouds accelerated
in the gravitational fields o? the center of the nuclei. We will discuss this in

the end of this section.
Great mass but small linear dimensions prompt the guess that there could

be a black hole. This would account for all the extraordinary qualities of these
objects. Now it is generally accepted that in AGN there are supermassive black
holes with accretion gas (and maybe also dust) disks. Ome of the most im-
portant facts implied by observations, especially by means of radio telescopes,
is the existence of directed jets from the nuclei of some active galaxies. For
some of the objects there are evidence that radio components move away from
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the nucleus at ultrarelativistic velocities. The existence of an axis of ejection
strongly suggests the presence of some stable compact gyroscope, probably a
rofating bulfri hole. In some cases one can observe evidence that there is also
precession of this gyroscope. An essential role in the physics of processes in
the centers of AGlsTa;rs probably played by black-hole electrodynamics.

In the model of a supermassive black hole with an accretion disk for AGN
one requires sources of fuel - gas or dust. The following sources have been
discussed: gas from nearby galactic companion {the result of interaction be-
tween the host galaxy and the companion), interstellar gas of the host galaxy,
disruption of stars by high velocity collisions in the vicinity of a black hole,
disruption of stars by the tidal field of the black hole and some others.

Clearly, the processes taking place in quasars and other galactic nuclei are
still a mystery in many respects. But the suggestion that we are witnessing the
work of a supermassive black hole with an accretion disk seems rather plausi-
ble. Rees (1990} advocates a hypothesis that the massive black holes are not
only in the active galactic nuclei but, also in the centers of “normal” galax-
ies (including nearby galaxies and our own Milky Way) (Rees 1990). They
are quiescent because they now starved of fuel (gas). Observations show that
galactic nuclei were more active in the past. Thus, “dead quasars” (massive
black holes without fuel) should be common at the present epoch.

How can these black holes be detected? It has been pointed out that
black holes produce cusp-like gravitational potentials and hence they should
produce cuspy-like density distributions of the stars in the central regions of
galaxies. Some authors have argued that the brightness profiles of the central
regions of particular galaxies imply that they contain black holes. However
the arguments based only on s brightness profiles are inconclusive. The
point is that a high central number density of stars in a core with small radius
can be the consequence of dissipation, and a cusp-like profile can be the result
of anisotropy of the velocity dispersion of stars. Thus these properties taken
alone are not sufficient evidence for the presence of a black hole.

The reliable way to detect black holes in the galactic nuclei is analogous
to the case of black holes in binaries. Namely, one must prove that there is
a large dark mass in a small volume, and that it can be nothing other than
a black hole. In order to obtain such a proof we can use arguments based on
both stellar kinematics and surface photometry of the galactic nuclei.

If the distribution of the mass M and the luminosity L as functions of the
radius are known we can consider the mass-to-light ratio M/L (in solar units)
as a function of radins. This ratio is well known for different types of stellar
populations. As a rule this ratio is between 1 and 10 for elliptical galaxies and
globular clusters (old stellar population dominates there). I for some galaxy
the ratio M/L is almost constant at rather large radii (and has a“normal®
value between 1 and 10) but rises rapidly (toward values much larger than 10)
as one approaches the galactic centre, then there is evidence for a central dark
objeet {(probably a black hole).

As an example consider galaxy NGC 3115 which is at a distance of 9.2Mpc
from us (Kormendy and Richstone (1992)]. For this galaxy M/L =~ 4 and
almost constant over a large range of radii r > 4" (in angular units). This
value is normal for a bulge of this type of galaxy. At radii r < 2" the ratio



109

Table 2.2: Supermassive holes [Rees 1998]

M, /Mg [ Method

MS87 : 2 x 10° | Stars+opt.disc
NGC 3115 10° Stars

NGC 4486 B 5x 10° | Stars

NGC 4594 (Sombrero) | 5 x 10 | Stars

NGC 3377 8 x 107 | Stars

NGC 3379 5x 107 | Stars

NGC 4258 4 x 107 | Masing H;0 disc
M31 (Andromeda) 3x 107 | Stars
- M32 8 x 10° | Stars

Galactic centre 2.5 x 10% | Stars+3-D motions

M/ L rises rapidly up to M/L = 40. If this isdue to a central dark mass added
to a stellar distribution with constant M/L, then My = 109203 M.

Is it possible to give another explanation of the large mass-to-light ratio

in the central region of a galaxy? We cannot exclude the possibility that a

contains a central compact cluster of dim stars. But it is unlikely. The
central density of stars in the galaxy NGC 3115 is not peculiar. It is the same
as in the centers of globular clusters. The direct observational data (spectra
and colors) of this galaxy do not give any evidence of a dramatic population
gradient near the center. Thus, the most plausible conclusion is that there is
a central massive black hole.

Unfortunately, it is difficult to detect massive black boles in ?a.nt elliptical
galaxies with active nuclei, where we are almost sure black holes must exist
because we observe their active manifestation [Kormendy (1993)]. The reason
for this is a fundamental difference between giant elliptical galaxies (the nu-
clei of some of them are among the most extreme examples of AGN), dwarf
elliptical galaxies and spiral ﬁala.xies. Dwarf ellipticals rotate rapidly and star
velocity dispersions are nearly isotropic. Giant elliptical galaxies do not ro-
tate sigu.iﬁcantiy and they have the anisotropic velocities. Ii is not so easy
to model these dispersions. Furthermore, giant elliptical galaxies have large
cores and shallow brightness profiles. Consequently, the projected spectra are
dominated by light from large radii, where a black hole has no effect.

The technique described above has been used to search for black holes
in galactic nuclel. Another possibility is to observe rotational velocities of
gas in the vicinity of the galactic center. So far (the middle of 1998) black
hole detections have been reported for the following galaxies: M32, M31, NGC
3377, NGC 4594, Milky Way, NGC3115, M87, and NGC 4258 [for review see
Rees (1998). Some evidence for a supermassive black hole in NGC 4468B was
reported by Kormendy et al. (1997).

Special investigations were performed in the case of the galaxy MB87 [see
Dressler (1989) for review of earlier works and Lauer ef ol 1992]. This is
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a giant elliptical galaxy with active nucleus and a jet from the center. At
present there is secure stellar-dynamical evidence for a black hole with mass
M = 3-10°My in this galaxy. The Hubble Space Telescope has revealed
a rotating disk of gas orbiting the central object in the galaxy [Ford et al.
(1994), Harms et al. (1994)]. The estimated mass of the central object is
M =2.4x10° M. The presence of a black hole in M87 is especially important
for our understanding of the nature of the central regions of galaxies because
in this case we observe also the activity of the ”central engine”.

Radio-astronomical observations of the nucleus of the galaxy NGC 4258
are of special interest }Miyoshj et al (1995)]. Using radio interferometry tech-
nique of observation of maser lines of molecules of water in gas clouds orbiting
in the close vicinity of the nucleus, the observers obta.inecF the reso-
lution 100 times better that in the case of observations by the Hubble Space
Telescope. The speciral resolution is 100 times better as well. According to
the interpretation of the cbservations the center of NGC 4258 harbors a thin
disk which was measured on scales of less than one light-year. The mass of the
central object is 3.6 x 10’ Mg. According to the opinion of Begelman and Rees
(1996): “It represents truly overwhelming evidence for a black hole... NGC
4258 is the system for which it is hardest to envisage that the mass comprises
anything but a single black hole”.

In conclusion we list in Table 2 estimates of masses of black holes in the
nuclei of some galaxies Rees (1998).

Progress in this field is very rapid and in the nearest future our knowledge
a.botpt evidence of supermassive black boles in galactic nuclei will be more
profound.

2.4.5 Primordial black holes

Modern astrophysics considers also the third possible type of black holes in
the Universe - primordial black holes. These black holes might appear from
inhomogeneities at the very beginning of the expansion of the Universe. Their
masses can be arbitrary, but primordial black holes with M < 10'%g would
have radiated away their mass by the Hawking quantum process in a time
t < 10'%years (the age of the Universe) Only primordial black holes with mass

M > 10'5g could exist in the contemporary Universe.

Searches for PBHs attempt to detect a diffuse photon {or another parti-
cle) background from a distribution of PBHs or to search directly for the final
emission stage of individual black holes. Using the theoretical spectra of par-
ticles and radiation emitting by evaporating black holes of different masses,
one can calculate the theoretical backgrounds of photons and other particles
produced by a distribution of PBHs emitting over the lifetime of the Universe.
The level of this background depends on the integrated density of PBHs with
initial masses in the considered range.

A comparison of the theoretical estimates with the observational cosmic
ray and -y-ray backgrounds place an upper limit on the integrated density of
PBHs with initial masses in this range. According to estimates of MacGibbon
and Carr (1991),, this limit corresponds to ~ 10~ of the integrated mass
density of the visible matter in the Universe (matter in the visible galaxies).



m

The comparison of the theory with other observational data gives more weak
limits (for review see Halzen et al. 1991, Coyne 1993).

The search for high energy gamma-ray bursts ag direct manifestation of the
final emission of the evaporating {exploding) individual PBHs has continued
for more than 20 years. No positive evidence for existence of PBHs has been
reported (see Cline and Hong (1992), (1994)).

A population of PBHs whose influence is small today may have been more
important in the earlier epochs of the evolution of the Universe. Radiation
from PBHs could perturb the usual picture of cosmological nucieosynthesis,
distort the microwave background and produced too much entropy in relation
to the matter density of the Universe. As we mentioned above, limits on the
density of PBHs, now or at earlier times, can be used to provide information
on the homogeneity and isotropy of the very early Universe, when they were
formed. For review see Novikov et al. (1979), Carr ef al. 1994,

The final state of the black hole evaporation is still unclear. There is
a possibility that the endpoint of the black hole evaporation is a stable relic.
The possible role of such relics in cosmology was first discussed by MacGibbon
(1987), for review see Barrow et al. 1992.

2.5 Tidal interaction of star with a supermassive
black hole

2.5.1 Introduction

The interaction of stars with a massive black hole probably plays an important
role in physical processes in the central regions of QSOs and active galactic
nuclei (AGNs), and even in global clusters and in the centers of normal g
galaxies. (For review see Rees (1989a,b), Shiossman, Begelman and Frank
{1990), Phinney (1989) and references therein).

Three dimensional numerica! simulations are needed to describe the hy-

drodynamics and microphysics of processes during a close encounter of a star
and a massive black hole. This approach is very time-consuming, even us-
ing supercomputers. There are also some approximate methods, namely, the
linear theory for small deformations of a star, and the method based on the
“sffine stellar model”. In latter method strong deformations are allowed for,
b]:l;lat density contours inside a star are restricted to a homologous ellipsoidal
shape,
Although the approximate methods are widely used, they do not allow one
to address some key aspects of the problem. Among these are the hydrody-
namics of tidal disruption, the distribution of the energy in the stellar debris,
the dynamics of nonlinear oscillations in the case of a close encounter, strip-
ping of the outer layers of a star by tidal forces, the physics of extremely close
encounters, and many others. Also, it is unclear whether the affine model is
reliable for describing numerous aspects of the close encounter problem. Thus,
one needs a modern three-dimensional numerical approach to the problem.

We started the corresponding project five years ago. In this paper I give a
brief review of our results in Khokhlov, Novikov and Pethick (1993a,b), Frolov,
Khokhlov, Novikov and Pethick {1994), Diener, Frolov, Khokhlov, Novikov
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and Pethick (1997, 1998). As a rule I will not give references to the original
papers. Corresponding references can be found in the papers mentioned above,

We will consider a star with mass M, and radius R, moving on a parabolic
(or almost parabolic) orbit with a pericentric distance R, around a black hole
with mass Mj,. This problem is important for the application to the discussion
of the processes in the galactic centers. We assume that M;, /M, > 1 and that
Rp/R, > 1. If the size of a black hole R), is much smaller than Rp then
Rp/Rp < 1, and Newtonian physics is valid. We start our consideration from
this cage and after that will consider relativistic tidal interaction of a star with

a massive_ b hole., ] ) L.
We will not consider here our numerical methods. Their description see

in the papers Khokhlov, Novikov and Pethick (1993a,b), Frolov, Khokhlov,
Novikov and Pethick (1994), Diener, Frolov, Khokhlov, Novikov and Pethick
(1997, 1998).

2.5.2 Newtonian encounters

Basic equation in the Newtonian approzimation In this Section
we assume that R;,/Rp < 1 and Newtonian physics is valid.

Thg st(;iar is described by the usual hydrodynamical equations for an in-
viscid fuid:

%te =-V- (pU)’ (5.15)
&?TU = V- (pUU) — VP + pg, {5.16)
%E =-V-[(E+P)U]+pU g (5.17)

Here p, P and U are the density, pressure, and velocity of matter. In these first
calculations we shall assume that the ratio of specific heats at constant pressure
and constant volume, v, is a constant, and therefore the energy density is given
by E = P/(y — 1) + pU?/2. The full acceleration includes contributions due
to self-gravity and due to external forces

g=-Vd+g,, (5.18)
where
_ _ [ Go(x)
O(r) = — / R (5.19)

We choose a nonrotating Cartesian coordinate system OXY Z , with its origin
O located at the {moving) center of mass of the star. The X-axis lies in the
orbital plane and is directed toward the pericenter of the orbit of the black
hole relative to the star. The Z-axis is perpendicular to the orbital plane.
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We assume that the orbit of the star is parabolic. In fact, since we inter-
ested only in the part of the orbit which is close to the pericenter, our results
should be applicable to very eccentric elliptical trajectories and to slightly
hyperbolic trajectories as well.

The parabolic trajectory of the black hole R(t) is described in OXY Z

system by the equations
R(t)/Rp =z =1+17, ¥(t) = 2 arctan y, (5.20)

where R is the position of the black hole, ¥ is the angle between the direction
to the pericenter and that to the black hole, and y is the real solution of

3 1/2
2 yym (G
3 +y= (2R§ ns (5.21)
where :
M, 1/2 R, 3/2
= - .22
= (%) (®) 2)

characterizes the strength of the tidal interaction.

In our nonrotating coordinate system the external acceleration, g, is re-
duced to the tidal acceleration, g;, of a black hole and is given by the gradient
of the tidal potential:

Be =Kt = V. (523)

Note that due to the inequality R, < R, only the first term in the expansion
of the tidal potential with respect to R./R, is important and thus we take

GMpr?1—3cos’6  GM, r* 1—3cos®s

R3 2 ~ R3 n2g3 2 ’
where J is the angle between R and r. In polar coordinates r, 8, ¢, the tidal
potential (Eq.(10)) becomes

GM;, 33
R3 42392
As an initial configuration we take a polytropic star of index n = 1.5 — 3.
Thus we have three independent parameters 5, n, and <y, which character-
ize our problem. If 4 > 1 + 1/n, the entropy inside a star grows outward
and the star is convectively stable. If v = 1 4+ 1/n, the entropy is constant
throughout the star and thus the star is neutrally stable with respect to con-
vection. If ¥ < 1+ 1/n the star is convectively unstable. The latter case
is excluded from our consideration. In what follows, we use units in which
G = M, = R, = 1 and present our results in nondimensional form. The
time unit then corresponds approximately to the time for sound to cross the
star. Time, density, energy, and angular momentum have to be multiplied by
(R3/GM.)\/2, M,/R3, GM?/R,, and (GM2R,)'/?, respectively, to transform
them to ordinary units.

‘I’g(l‘) =

(5.24)

& = {0032 8 — sin® @ cos{2(¢ — ¥)} — %} . (5.25)
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Results for weak tidal encounters We have computed the tidal in-
teraction of n = 1.5,2 and 3 polytropic stars with v = 5/3 for various values
of n in the range from 01. to 3.5. In addition we have computed a few cases
of n = 2, v = 1.5 encounters. In this subsection we will discuss only cases in
which the tidal interaction does not lead to disruption or stripping of the star
(Khokhlov, Novikov and Pethick 1993a). Close encounters will be considered

in the next subsection. o .
the case of rather far encounters the resuit of tidal interaction can be
roughly described as excitation of nonradial modes of oscillations. For closer

encounters nonlinear effects are important. In our computations we observed
very complicated and interesting motions of stellar matter.

The integral quantities important for various applications are the total
energy By, and angular momentum L deposited in a star a during the en-
counter. During the encounter the variations of both the total energy and the
angular momentum are nonmonotonic. The growth of E;,; and L occurs after
passage of the pericenter when the lag between the tides and the direction
to the black hole is maximum. Later on, the relative orientation of the tidal
waves with respect to the black hole changes, and the tidal interaction gives
rise to decreases in both the energy and the angular momentum. We note that
the angular momentum acquired by a star does not correspond to its apparent
rotation, which just reflects the propagation of tidally excited waves.

In the outer layers strong nonlinear hydrodynamical effects are observed.
The apparent rotation of the outer layers is slower than of the inner parts of
a star, This leads to the formation of interesting hole-like structures.

For encounters with n < 3.5, nonlinear effects lead to an increase of the
energy transfer by a factor of 2 or more compared with the prediction of the
linear theory.

Results for strong tidal encounters In this subsection we consider
close encounters that lead to stripping or disruption of a star by tidal forces
(Khokhlov, Novikov and Pethick, 1993b).

Let us consider an encounter of an n = 2, y = 3/5 star with a black hole
for 7 = 1.5.

Qualitatively the hydrodynamics of the interaction with the black hole is
the same as for most distant encounters, but the deformations of the star are
much greater. During the computations ~15% of the mass flows out of the
grid with roughly the parabolic velocity. This outflow occurs at the low-density
edges of the tidal lobes. We expect this matter to become unbound and to be
lost from the star. For the rest of the star, the hydrodynamical behavior is
much the same as for the case of more distant encounters. After the encounter,
the central density, p, averaged over several pulsations, drops to ~ 0.5509,
where pg is the central density of the initial model. The numerical period
of the model is [] & 4.5, whereas the period of the radial f-mode, predicted

by linear theory is 3.14. If one scales this period by the factor (op/p)!/2 to
allow approximately for some of the nonlinear effects, one finds [eors = 4.23,
which is rather close to the period seen in the computations. In the previous
subsection we found that for distant encounters where deformations are small,
the numerical periods of the central density variations coincide with the period

= 0 fundamental mode calculated in linear theory. For close encounters these
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Table 2.3: Dependence of 7. on polytropic index n.

periods are different, but even for the case n = 2, n = 1.5 considered here,
the difference is only 6%. We conclude that the fundamental radial mode is
excited here, just as it is in the case of more distant encounters.

The computations show that the energy transferred to the star would be
AFE = 0.15,which is less than the binding energy of the initial stellar model,
| Etot| = 0.5. The final value of the angular momentum is L = 0.1.

The next encounter, for n =3, ¥ = §/3, and 1 = 1, was was computed on
a moving grid to keep the expanding matter inside the computational domain.
The hydrodynamical picture is qﬁita.tively similar to that discussed above.
In the outer layers strong nonlinear effects lead to stripping of material. Two
lobes of outflowing material are now clearly seen on the expanding grid, but
they contain only a few percent of the mass of the star.

After the encounter the total energy tends to a constant value. The amount
of energy transferred to the star is AE s 0.16, which is less than the total
energy of the initial model |Ey| = 0.749. The star is not totally disrupted in
this case, and after the encounter the angular momentum transferred to the
star is L ~ (.1,

Results for n = 3, ¥ = 5/3, and 5 = 0.5 case show that stripping is much
more pronounced than in the previous case. At the end of the computations
the binding energy is positive and continues to increase. The angular momen-
tum at the end of the computations is L =5 (.75 and this increases too. The
fact that the total energy becomes positive indicates that the star may be
disrupted. However, computations show that the central condensed body sur-
vives. Moreover, the central density tends to a constant value. Both of these
facts indicate that even though the energy transferred exceeds the binding
energy of the star, the inner parts of the star may remain bound.

In Table 3 we give the extrapolated critical values of 1, e, at which
the energy deposited is equal to the binding energy of the initial star. The
estimates of 1. from our calculations are systematically larger than those
based on the linear theory, and the deviations tend to increase with decreasing
polytropic index, n. Evans and Kochanek (1989) have computed the 7 = 1
encounter of the n = 1.5 polytrope and find that the star is totally disrupted.
This agrees with our conclusion that for polytropic stars with n = 1.5 the
critical value of 9 is greater than one.

Thus one can conclude that siripping of a star takes place for n larger
than 7.4 (see Rasio and Shapiro (1991)}. For n £ feit a star may not be
disrupted completely but the innermost parts of the star may form a bound
configuration. In other words, part of the star may survive when the energy
deposited exceeds the initial binding energy of the star.
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2.5.3 Relativistic encounters

Tidal interaction of stars with a nonrotating black hole In ihis

%u tion we are interested in the case when relativigtic effects of the black
ole gravity are important. This is the case when the pericentric distance

from a black hole R, becomes comparable with the black hole radius, rg =
2GM;, /¢, rg/ Ry ~ 1. In addition, we are interested in stellar encounters when
the tidal acceleration at the pericenter is comparable with the acceleration
due to self-gravity at the stellar surface, GM;.R,./R% ~ GM,/R2, where R,,
and M, are the stellar radius and mass respectively. Combining these two
conditions, we can express the mass of the black hole as a function of the
radius and mass of the star

My, =~ 108 M, (1%) ¥ (%) v (5.26)

For this black hole mass both relativistic effects during tidal interaction are
important, and tidal and self-gravity forces at the stellar surface are compara-
ble. For stars with M, ~ My, R, ~ Rg this formula gives M;, ~ 108 M. For
more compact stars with M, =~ My, relativistic tidal interaction of moder-
ate strength would occur during encounters with black holes of smaller mass.
Laguna et al. (1993) considered relativistic encounters of a polytropic stellar
model with a massive black hole in the case when the tidal force substantially
exceeds the acceleration due to self-gravity at the stellar surface (for their
method see Laguna, Miller and Zurek, 1993).

In this subsection we congider the tidal interaction of a relativistic white
dwarf model with a massive black hole Frolov, Khokhlov, Novikov and Pethick

(1994). For white dwarfs (WDs), the stellar radius has a size By = Ryq > 2 X
10° — 10°cm, and relativistic effects become important during a moderate tidal
interaction when the black hole mass is M, ~ 10* — 105M;. A WD orbiting
around a black hole can be source of gravitational radiation in the frequency
range ~ 1s~! that is important for future gravitational wave projects.

Following the approach of previous section, we consider here parabolic
encounters of a carbon-oxygen WD of mass 0.6My with a 10° Mg black hole,
analyze the hydrodynamics of the WD matter, study the deposition of energy
and angular momentum in th WD and determine the critical conditions for
tidal disruption. We want to understand how close the WD can approach a
black hole without being destroyed.

About relativistic basic equation see {7]. We introduce the following nota-
tions: r, = 2G M} /c2, r is the radial coordinate in the Schwarzschild metric,
7 is the proper time of the star, £ and L are dimensionless integrals of motion
“]r]hich l:.re connected with the total energy F and angular momentum L by
the relations

E = E/M,¢&, L = L{M,.crg, (5.27)

and M, is the mass of the star. In what follows we consider parabolic mo-
tion for which E = 1, s0 trajectories are characterized by one dimensionless
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constant L. It is convenient to introduce also the following notation:

R, = L?r, t, = L3rq/c, p=L1=(ry/Rp)"2, (5.28)

™ =1/t z{(t*) = r(7}/ Ry, " =tfty, (5.29)
and

rp = Ry, (5.30)
where

Ty = %(1 +y/1—42). (5.31)

Relativistic effects influence the trajectory of a star and the tensor struc-
ture of the tidal forces. To clarify these effects, we compare the motion of a
star with the parabolic velocity in relativistic and nonrelativistic theories. We
hold fixed the same conserved quantity in the two problems (relativistic and
nonrelativistic) - the angular momentum of the star, which unambiguously
fixes the trajectory for the parabolic motion. The following four relativistic
effects are important:

1. Relativistic shift of the pericenter distance,
2. Relativistic time delay,
3. Relativistic precession, and
4. Tensorial structure of tidal forces.
1. The difference Az, between z, and its nonrelativistic limit, Zppr = 1

Azy = —-%(1 + /1= 4p?). (5.32)

For small 4 this difference is Az, ~ —u?. In other words the radial coordi-
nate of a relativistic pericenter is smaller than the nonrelativistic pericenter
distance, Rp, by an amount ARp = RyAzp = 1.

2. Let us denote ponrelativistic limit (that is when ¢ — c0) 7* by 73;,. The
difference

Ar*=r" -7, (6.33)
remains finite in the limit r — oo. In this limit,

is

AP (r— 00) =75 = E’."\/;TE[(I — WK = 1(1 + 2u)E], (5.34)

where K = K(m) and E = E{m) are the complete elliptic integrals of the
first and second kind, respectively, and

4y
= — .30
m T+%s (5.35)
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For small 4,
AT*(r ~ 00) ~ %E,u*. (5.36)

In other words, in the relativistic case it takes a longer time than in the
nonrelativistic case for a body with the same angular momentum to pPass near a
black hole and return to the same initial radius. The time delay AT = 2pAT*

18

4 \ R, c

3. By relativistic precession we mean the following effect. Let a non-
rotating rigid body have three orthogonal axes rigidly attached to it. The
orientation of these axes in space, after a test body passes near a black hole
and goes away, will differ slightly from their initial orientations. The total
precession angel is

1/2
AT ~ 37 (-"i) s, (5.37)

2

A = K—mr. 5.38
For small 4 one has
drry, 3w ,
Abyres 3 = (5.39)

4. The tensorial structure of tidal forces is different in the relativistic and
nonrelativistic cases (details see in Frolov, Khokhlov, Novikov and Pethick
1994). The extra term of the order 3u2/z2 which enters the relativistic rela-
tions describes relativistic effects, These effects lead to an additional increase
of the tidal acceleration in the 1—2 plane, without changing the acceleration in
the perpendicular 3 direction. The maximum effect is reached for the limiting
value of u = 1/2, when at the pericenter the star is stretched in the radial
direction with a strength 5/2 times larger, and compresses in the orthogonal
direction with a strength 4 times larger than that in the nonrelativistic case.

Now we consider a WD of mass M,,4 moving on a parabolic orbit around a
black hole of mass M. As already mentioned above, the trajectory is uniquely
defined by specifying the black hole mass M}, and angular momentum of the
orbital motion L. ‘%‘ie parameters 77 and u are uniquely related to the black
hole mass and orbital angular momentum:

_2GM, L

T (5.40)

b

1 L
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Table 2.4: E;;: and AL values

N AL

T 1 ggcgn 8"
T 2
3::::::::: 148
L 9.7

The nonrelativistic limit correspond to ¢ — co. In this limit u — 0 according
to Eq.(40), while Eq.(41) corresponds to encounters with different L and M,
but with a fixed strength of the interaction of the pericenter.

We describe both the hydrodynamics of the WD and its self-gravity in the
framework of Newtonian physics. The WD is subjected to the action of the
relativistic tidal acceleration field.

Computations begin on a stationary grid. When the expanding star reaches
the boundary, the grid begins to expand uniformly, in order to most of
the stellar matter inside the computational domain. The equation of state

of thg WD matter in tab form takes the account the (ﬁqntribu ions from
the ideal Fermi-Dirac gas of electrons and positrons with arbitrary degeneracy

and degree of relativity, ions, and equilibrium Planck radiation.

The WD mass is taken to be Mg = 0.64M,,, its temperature to be 10°K,
and its composition to be equal amounts of C and O by mass. With our
equation of state, the radius of the WD is R,,q = 8.41 X 10%cm, the central
density is p, = 4.0 x 10% em™3, the central pressure F, = 2.2 x 102 ergs cm
=3 the gravitational energy is E; = —1.15 x 10%ergs, the thermal energy is
E; = 6.49 x 10%%rgs, and the total energy is Ey = —5.02 x 10%%rgs. With
this central density, the WD is practically nonrelativistic and is close to an

= 1.5 polytrope. We start the integration when the radial coordinate of the
WD, r,isr =2rp. .

We computed five encounters of the WD with a black hole of mass M =
8.94 x 10 M. The main parameters of the encounters are given in Table 4.
The encounters N1 to N4 are relativistic, and are characterized by different
orbital angular momenta L. The nonrelativistic encounter N5 was computed
for comparison.

The encounter N1 during which the star partially survives, is nondisrup-
tive. The encounters N2 to N4 are disruptive.

In Table 4 we give the total energy of the WD, E,, after the encounter
and the deposited angular momentum AL.

In the nondisruptive case siripping of matter takes place. In the surface
layers of the surviving core, complicated hydrodynamical phenomena are re-
vealed. In both disruptive and nondisruptive encounter material flows put in
the form of two thin S-shaped, supersonic jets. Qur results provide realistic
initial conditions for the subsequent investigation of the dynamic of the debris
in the field of the black hole (Diener, Frolov, Khokhlov, Novikov and Pethick,
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Table 2.5: The computed encounters

Model « L, Q 6 M. R,

1 1.0 333333 00 /2y 10 10 3%’5"’7—1
2 1.0 315955 0.0 7/2) 1.0 1.0 2.6539
3 1.0 3.00491 0.0 /2) 1.0 1.0 2.2566
4 1.0 285255 0.0 x/2) 1.0 1.0 19051
5 1.0 272945 0.0 xf2) 10 10 1.6486
6 -1.0 3.33333 0.0 7/2) 1.0 1.0 28116
7 -11.0 3.15955 110.011 7/2) 1.0 %.0 2.30%8
§ 18 88 ¥ * i) 18 3

10 1.0 00 111111 {x/2) 1.0 1.0 3.0014
11 1.0 0.0 998276 (x/2) 1.0 1.0 25018
12 05 3.34725 0.0 /2) 1.0 1.0 3.1224
13 05 214139 5.0 12" 1.0 1.0 2.3801
14 1.0 2.5 00  (n/2) 20 15 24

1998).
We evaluated the critical conditions for the complete disruption of the
white dwarf. The critical angular momentum of the orbital motion is estimated
as Lerit =~ 3.7 x 10 g ¢cm? s~1. The correspondj.nf critical % i iz =~ 2.0
Comparison was done with the corresponding nonrelativistic encounters. The
relativistic effects lead to more strong and complicated tidal interaction.

2.5.4 Tidal interaction of stars with a rotating black hole

The tidal interaction of n = 1.5 polytropic stars with a massive rotating black
hole (BH) was studied numerically in Diener, Frolov, Khokhlov, Novikov and
Pethick, 1997. The general relativistic tidal potential for the Kerr metric was
used $0 evaluate tidal forces exerted on a star. The hydrodynamic response of
a star to these forces was treated in the Newtonian approximation. In Diener,
Frolov, Khokhilov, Novikov and Pethick, 1997 we have computed the energy,
AE, and angular momentum, AL, transferred into a star, and the mass, Aﬂ ,
lost by the star during the interaction.

We have performed computations for encounters of different strength of
the interaction, and for different values of the BH rotation parameter «r. The
parameters of computed encounters are listed in Table 5. Detail description
(1)5 g.%l used parameters see in Diener, Frolov, Khokhlov, Novikov and Pethick,

We choose the z-component of the orbital angular momentum, L,, Carter’s
fourth constant, Q, and the polar angle at the pericenter, 8,, to character-
ize the orbit. Next we choose M, and R, to characterize the initial star,
The BH mass was selected in most cases to be My = 1.0853 x 107My. The
only exception is model 14 in Table 3 for which M), = 2.7455 x 107 M. In
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Table 2.6: The results of the numerical simulations

Model AE{%?B AMB,:)[{M. L/(GM3R)?
X 0.0035 X
% : 8:?@2

i
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Frolov, Khokhlov, Novikov and Pethick, 1994 a relativistic parameter 5, =
n(zp/zp")3/2, was introduced to characterize the strength of the encounter.

It takes into account the decrease of the radial coordinate at the pericen-
ter due to relativistic effects in the case of a non-rotating BH. Here n =
(M. /M,)/?(R,/R,)%? characterizes the strength of the encounter in the New-
tonian case and z3" = L2 + Q is the pericentric distance for parabolic orbits
in units of r, in the non-relativistic case. In the general case of a rotating
BH, the strength of the interaction depends on all parameters of the orbit,
but the parameter 5, gives a rough idea of the strength of the interaction.
With decreasing pericentric distance the strength of the interaction increases
while 7, decreases. This parameter 7 is listed in Table § for the purpose of
comparigon.

Most of the computations were performed for an extremely rotating BH,
a = 1, and some for the BH with half the extremal rotation, a = 0.5, (see
column 2 of Table 5). Models 1 to 7 are encounters with the orbit lying in the
equatorial plane of the BH. Encounters 1 to 5 were prograde, while 6 and 7
were retrograde. For the encounters 8 to 11, the initial angular momentum of
the orbit was orthogonal to the angular momentum of the BH. These orbits
are not planar. For encounters 8 and 9, the pericenter of the orbit is located at
the axis of the BH rotation. For encounters 10 and 11 the pericenter is located
in the equatorial plane of the BH. Encounter 12 is a prograde encounter with
the orbit lying in the equatorial plane. For encounter 13, the pericenter is
located neither in the equatorial plane nor on the axis of the BH rotation.
Encounters 12 and 13 are for a rotating BH with half the extremal rotation.
Encounter 14 is in the equatorial plane and prograde. In this case the stellar
mass and radius are M, = 2M, and R, = 1.5R; respectively.

The energy and angular momentum transfer and the mass loss for the
computed encounters are listed in Table 6.

The quantities AE, AL and AM depend on the stellar orbit, stellar struc-
ture, and the black hole’s mass and angular momentum in a complicated way.
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We show in Diener, Frolov, Khokhlov, Novikov and Pethick (1997) that the
dependence can be factorized by introducing a single dimensionless parameter
C proportional to the integral of the square of the trace of the tidal tensor
along the steliar trajectory. The energy and angular momentum transfer, and
the mass loss as functions of C are found in hzdrodyna.mica.l simulations. An-
alytical approximations to AE(C) and AM(C) are constructed. The value of
C does not depend on the stellar structure. It is a universal function on the

parameters of the orbit, and can tabulated once and for all. Tables of C are
presented in Diener, Frolov, Khokhlov, Novikov and Pethick (1997).

The results of Diener, Frolov, Khokhlov, Novikov and Pethick (1997) allow
one to easily determine the outcome of tidal interaction for every possible
combination of the input parameters. We find that the final energy of a star
or a stellar remnant (if mass is lost) and its internal angular momentum as
well depend most strongly on the angle between the initial orbital angular
momentum and the angular momentum of the black hole.
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