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Chapter 1

Introduction: Generalized Kasner
Variables in inhomogeneous
cosmological models

1. Introduction

The problem of the cosmological singularity remains to be one of the most important problems in
modern theoretical physics. In studying the singularity we meet two major difficulties. The first
one is that we do not know ihe laws steering physics in such & region and have to use significant
extrapolation. In particular, the number of modern unified theories predict that the dimension of
the Universe exceeds the one we normally experience at the macroscopic level [14]. | is assumed
that at present additional dimensions are hidden, for they are compactified to Planckian size,
and they do not display themselves in macroscopic and even microgscopic processes. However,
the situation might be changed when we consider the very begioning of the evolution of our
Universe where the Universe size could approach the Planckian scale. Therefore, in the early
Universe additional dimensions, if they exist, must not be different from ordinary dimensions
" and should be taken into account. This enables us to consider more general than Einstein's one
multidimensional theories of gravity [37) in order to inquire into the nature and properties of
singularities.

The second difficulty appears from the fact that the singularity, as is widely accepted, requires
quantum gravity to provide its exhaustive description. We do not have any reasonable theory of
such a kind yet and, therefore, in the absence of such a theory, of essential interest represents the
postibility of constructing and studying the models which ate from one gide sufficiently complex
to describe real properties of gravitational fields near the singularity, and, from the other side,
sufficiently simple to admit their quantum consideration. We stress that in order to construct
and chooes such models of principal significance has their classical investigation being carried out
in the general inhomogeneous case.
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Studying the behavior of inhomogeneous cosmological models near the zingularity from the
clasnical point of view was initiated by V.A. Belinaky et al. more than 20 years age (5] in the
case D = 4 and was continued in Ref. (6, 10] for the multidimensional case. Properties of
inhomogeneities of the metric based on the general solutions was considered first in Refa. [21, 24}
for the case D = 4 and the multidimensional generalization was given in Ref. [29]. We note also
that less general inhomogeneous models have been considered in Ref. [3]. Quantization of those
inhomogeneous cosmological models was considered in Refs. [25, 30, 31].

As follows from these papers, the main features of the dynamics of an inhomogeneous gravi-
tational field near the singularity can be summarized as follows:

(1). Locally the dynamics of metric functions resembles the behavior of the most general
non-diagonal homogeneous models. In other words, near the singularity the gravitational field
becornes quasi-homogeneous one, i.e., acquires a large-scale character.

{2). In the vicinity of a singularity a scalar field is the only kind of matter effecting the
dynamics of the metric.

The best way to understand the first fact is to consider the most simple isotropic mode]. Let
us consider the D— dimensional interval in the form (Throughout these lecturez we do not specify
the number of dimensions I?, unless otherwise ia noted.)

da = df* — a*dx* (1.1)

with the spatial interval being corresponding to the flat space. The gravitational part of the
action is taken in the usual form

I= % j d®z/—gR (1.2)

(for the sake of simplicity in what follows we put k = 1). Then the Einstein equations can be
read off

R-0R=T;, 13)
where for the atress-energy tensor we adopt the expression in the form of a perfect fluid
T = (p+ £)wrse — pogas (1.4)
For the metric {1.1} the Einatein equations give
R = —nk = 1(c+np)

" (185)
R - 1R =0 (3 e,
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where n = D —1 is the number of spatial dimensions apd the dote, as usual, stands for derivative
with respect to cosmological time i. From these equations one obtains that close to the singularity
(as & - 0) the scale factor behaves as a ~ ¢* with the exponent

_ 4
T de+(n—1){e+np)

Inhomogeneities of the metric can be considered within this model as small perturbations fg;
of the isotropic metric (1.1). As is known, in cosmology the only natural scale is the horizon size
I, (which can be used to measure the distance from the singularity)

-at) [/ 35 (19)

Using this scale inhomogensities of the metric may be divided into large-scale (4 3 i) and small-
acale (§; < i) ones. From ( 1.6) we find that the horizon sise varies with time as a linear foction
Iy ~ t , whereas scales of inhomogeneities behave aa the scale factor does & ~ * (as t — 0)
and what is important, & < 1. Thus, it is clear that an arbitrary inhomogeneous field becomes
large scale sufficiently closely to the singularity. We note that more rigorous consideration (in the
nonlinear case) does not change qualitatively this property.

Since inhomogeneities are large scale, there are no effects connected with the propagating of
gravitational waves, eic., and this would mean that near the singularity inhomogeneities become
passive. Therefore, the dynamics of the field may be approximately described by the most general
homogeneous model depending parametrically upon the spatial coordinates. Note, however, that
the homogeneous model would appear to be in s general non-diagonal form.

To understand the second fact we have to consider more complicated model, for the isotropic
Universe cannot exist without matter. Let us consider the simplest homogeneous anisotropic
model (the so-called Kasner model) with the metric being given by the interval

ds = &t - 3 (ax4)’. (1.7)

Now let us assume that matter is negligible as compared with pure gravitational degrees of
freedom. Then the Einstein equations (1.3) are [34]
m =X ’:‘ =0 :
; .y (1.8)
R=-p(va) =0,

where V = \/—Ig = []a; is the volume element. From these squations we obtain the well known
Kasner solution a; = aft% with exponents satiafying the identities T a; = ¥ #? = 1. Hence, we
find the estimate for behavior of curvature terms R} ~ £~32.
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The simplest way to obtain similar estimates for the stress-energy terms is to consider the
perfect fluid having pure potential motions. In this case the velocity u; can be presented in the
form u; = Bi¢/ (¢;;¢"")lh and the stress-energy tensor {1.4) can be obtained from the variation
principle with the Lagrangian density being

L= 3v=3(pas*)" (19)

and with the exponent § depending upon the equation of state as follows = %’1 The energy
density £ and the pressure p are expressed via the field ¢ by the expressions £ = (u— ,1-,) (ﬁ*#‘)“
sod p = 1 (&;@5’)’ respectively. The equation of motion for the field function ¢ as it follows
from {1.9) is .

=8 (V99" ($ 9" 0a8) = 0

7= (vV=99™ (.4") " Bud)
which in the case of the Kasner model takes the form

Ity
(V (4) ) -0

and has the solution T} ~ £ ~ ¢~ where k = %*. Thus, one can see that for the equation
of state satiefying the inequality p < € we have & < 1 and only for the limiting case p = ¢ do

both terma in (1.3) turn out to be of the same order and the expression (1.9) coincides with the
Lagrangian of the ordinary acalar field.

In the general inhomogeneous case the metric functione can be divided into two groups of
variables. Near the singularity the first group hae behavior like a set of coupled acalar fields while
residual variables behave as a set of vector fields and can be neglected in & leading order (in
the same manner as it happens for the matter having an equation of state ¢ > p) [34, 29). In
order to make such division in an explicit form it turns out to be convenient to use the so-called
Kasner-like parametrisation of the dynamical functions [24, 29].

2. Generalized Kasner model, Generalized Kasner Variables

The most simple way to introduce the generalised Kasner variables is to consider the generalized
Kasner solution [34]). Let us consider the canonical formulation of gravity. The D—dimensional
interval can be represented in the form

da® = N?dt? — gop (do® + N*dt) (de” + NPdt),

where N and N“ are the lapse function and the shift vector respectively which play the role
of Lagrangian multipliers. The basic variables are the Riemann metric components g.s and a
scalar field ¢ specified on the n-dimensional spatial manifold S, and their conjugate momenta
% = /g(K*? — g**K) and II,, where a = 1,...,n and K is the extrinsic curvature of §.
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For the sake of simplicity we shall consider § to be compact, i.e., 3§ = 0 {one may consider § to
be an n-dimensional sphere though this has no significance for our investigation, for cur analysia
will be mostly of local character). The action haa the following form in the Planck units (see, for
example, [38]):

I= f ( "’a"“’ +n,2 m - NH- NGH") & zdt, (2.10)

with the Hamiltonian and momentum conatraints being given by the expressions

= % {msm2 - () + 313 + aW(9) - B}, (a11)

H= = -2 + g°°0a¢ll,, (212)
where the scalar field potential is

W(d) = 5 {s™ 0006 + V($)}. (213)

2.1. Generalized Kasner model

A generalized Kaaner solution is realised under the assumption that we can neglect in (2.10) the
potential terms in compatison with the kipetic terms

1 1, .
—\/",:T ~ ;(l:l,,u,.) > (W, R), (2.14)

where /gT denotes the first three terms in (2.11). Then, using the gage N = 1, N* =0 we ,
from (2.10), cbtain the Einatein equations in the form

gus=o,

B%a0 = 25 (Tap — Ly0.07)
(2.15)

=50

which should be completed by the constraint equations

H=0, H =0 . (2.16)
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This system of equations gives the so-called generalited Kasner solution constructed first by
Lifshitz and Khalatnikov in 1963 [34]:

Gop = Ti L (2) 4 (=) ,
I3 = 5w (=) 15 (2} (=)
$ = ho(2)+g(z)lnt,
Oy (2) = Be(e) ix'()

(2.17)

where LT (x) are vectors dual to £ (2), { Lf€) = &) and the Kasner expouents s;(z) are
expressed via eigenvalues x' of the momentum matrix as follows

s(2)=1—(n- 1) (") (2.18)

and satisfy the identity 3 s, = 1. The momentum constraint {2.16) reduces the number of arbi-
trary functions contained in the Kasner vectora £i {z) down to n? —n , whereas the Hamiltonian
constraint imply the additional restriction on the Kasner exponents

Y+ =1. (2.19)

Thus, the Kasner exponents run over the range —2=2 < 5, <} .

Now we are ready to understand the meaning of the conditions of applicability of the gen-
eralised Kasner model which are given by the inequalities (2.14). Aa it follows from (2.17)
g3=( w'} * and hence, for the scalar field ¢ one finds that the left hand side of the inequalities
(2.14) has the order il]’ ~ £~ ~ 5 74? while the right hand side has the order W ~ I[72¢* (we
note that as ¢ — 0 the potential of the scalar field V (¢} is negligible in comparison with the
terme containing spatial derivatives). Thus, the inequality (2.14) can be re-written aa f; 33 i) .
The same meaning has the gravitational part of inequalities (2.14).

In this manner the conditions of the applicability of the generalized Kasner model turns out
to be coincided with the conditions that the fields are to be large-scale cnea.

2.2. Generalized Kasner variables

iFrom (2.17) one can see that in the generalised Kasner model the only evolving functions are the
acales of the Kasner vectors. Since, as was shown in Refs. {5, 6], the generalized Kasner solution
takes a substantial portion of the evolution of the metric, it is convenient to introduce a Kasner-
like parametrisation of the dynamical variables [24, 29]. The main idea here is to introduce a new
cancnical variables which from the very beginning distinguish explicitly the scales of the Kasner
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vectors. To this end we consider the following representation for the metric components and their
conjugate momenta:

= ep{¢'} 05, (2.20)

=3 L2, (2.21)

where 128 = 8 (a,b=0,..,(n — 1)), and now the vectors £ contain only n{n — 1) arbitrary
functions of the spatial coordinates. A further parametrisation may be taken in the form

L=U;8, WeS0m), Si=H+8, : (2.22)

where R} denotes a triangle matrix (R = 0 as a < a). Substituting (2.20) - (2.22) into (2.10)
we obtain the following expression for the action functional:

I= _[ (p.— + T R:‘ + n,a‘ NH® - N,H’) dadt, (2.23)
where T = 23, s I3U? and the Hamiltonian constraint takes the form
- G{En - hEr e mev), (224)

sad V = g(W(¢) - R).

In the case of n = 3 the functions R? are connected with just transformations of the coordinate
system and may be removed by solving the momentum constraints 5= = 0. Indeed, in this case
it is convenient to parametrize this matrix by three functions as follows

=8, (z) .
Then their momenta will be determined as

Po =20, (2 p-UaUuaz"/W)
b
and, hence, the momentum constraint takes the most simple form

Hy = E{mﬂaf + Pulay®) + Wy 8pé

which-can be easily resolved with respect to P, if one considers 3* to be a new coordinates on
S.
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In the multidimensional case, however, the functions R contain !'l",;“l dynamical functions
22 well and, therefore, we cannot distingnish coordinate functions in the explicit form as in the

case n =3 .

Now, it is easy to see that the choice of the Kasner-like parametrigation simplifies the procedure
of constructing the generalized Kaaner solution. Indeed, if we now neglect the potential term in
(2.23) and put N = 0, we find that the Hamiitonian does not depend on the scale functions
snd other dynamical variables contained in Kasner vectors introduced by expressions (2.20) and
(2.21).

3. The asymptotic model in the vicinity of a cosmological singularity
(the BLK model)

As is well known [5, 6], the Kamer regime (2.17) turns out to be unstable in the general case.
This happens due to violation of the condition (2.14) since the potential V contains increasing
terms which lead to the replacement of Kosner regimes. Indeed, as was pointed out above in
the generalisad Kasner model the only evolving variables are the scale functions of the Kasner
vectors g; = exp (}q‘) ~ a%t* and part of the Kasner exponente can have negative sign. This
means that in the directions corresponding to the negative exponenta scale funclions increase
when approaching the singularity.

To distinguith the dependence of the potential upon scale functions let us consider the sirne-
ture of the potential terms. Let &' = ¢, (¢)dz® be a basis of one forms on 5 in which the spatial
interval takes the form

d" =£",'¢ilj.
This baxis defines the structure functions C; ;5 as
A
de' = y e At
In terms of these functions the scalar curvature has the form
) .
R=Vi6i-GGi-; wik{Cim+ Cuij— Cia} ,

where V, = Ee8, sud C; = Cu,4 - Thus, choosing this basis in the form ¢ = exp (1¢°) & () da*
we find that the siructure functions depend upon scale functions ¢° in the following manner

C‘a‘.st='\-‘.ﬁm(%(q‘—¢"—q*]) )

where we distinguished in the explicit form the leading exponeptial multiplier. In what follows it
is convenient to introduce the anisotropy parameters as follows

o
Q=5
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In terms of these parameters the scale functions take the form of = ¢® . Hence, we find that
the potential terms can be presented in the form

V=3, (3.28)
A=1

where A4 is a set of functions of all dynamical variables and their derivatives and o4 are linear
functions of the anisotropy parameters

Oae =1 +Qa—Q—Q., b#c. {3.26)
Now one can easily see that incressing terms are those ones for which a combination of Kasner
exponents of the type (3.26) satisfien the inequality

148, —2—s <O

In the case of a general position of the set of the exponents s, there is only one such term which
corresponds to the power {3.26) op n-3,n—1 With Kasner exponents being given in the increasing
order $9 < ... < 8p 3 < Su- -

Exercise [5, 6].

Retgining fust the increasing term in the poiential V [V = Agu_gn18™=2) to find oui
the law of the repl ¢ of the Kaser ezxponents.

The answer is given by the formulas

L —_ —- - L —_
%0 = Tiamts ' % = T3asts ?
o Amrtag s = Aghetany
Be 9= iidmtes ? 1= TTymats ¢t (3.21)

=g 8= 14+80— 803~ 9a1 <0,

Here we shall use a more simple way. As was shown (e.g., se¢, Ref. [4]} in the limit £ — ¢
the maximal value of o, 31 tends to sero. This means that in leading order one can use
the approximation of "deep oscillations” [4] by means of setting o5 = 0 and considering the
replacement of Kasner regimes to occur instantanecus. The medel obtained thus we shall call the
inhomogenecus BLK (Belinaky - Lifshits - Khalatnikov) model.

The validity of such an approximation can be seen straightforwardly from (2.23) (see Ref. [38]
and also Refs. [24, 261). Indeed, assuming the finiteness of the functions . and considering the
limit g — O we find that the potential V' may be modeled by the potential walls

reotalea@={ 3 ASh (628)
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Thua, in this limit we obtain that the potential V., depends only on scale functions. Then putting
N = ) we can remove the passive dynamical functions T and R2 from the action (2.23) and
get the reduced dynamical aystem in the form

I= js (P-%!;‘“ + m%% - [ZP’ - ﬁ(Ep)’ + %Hi + V..(Q)]) it (3.29)

where X is expressed via the lapse function as .\=%.

To conclude this section I would like to point out to the fact that the momentum constraint
has disappeared from (3.29). Nevertheless, the momentum constraint H, = 0 still relates all
dynamical functions and, thereby, reduces the number of arbitrary functions contained in T2 .
Therefore the action contains also implicit information about rotation of Kasner vectors. Thia
follows simply from that Kasner vectors , in virtue of (2.22}, are functions of all dynamical
vatiables and explicitly contain scale functions and their momenta.

To conclude this section we point out other important inhomogeneous models which can be
described within the kasner-like parametnisation. Those are the inflationary model which was
constructed first by Starobinsky in Ref. [43] and the quasi-isotropic inhomogeneous model which
was constructed by Lifshitz and Khalatnikov in Ref. [34]. The first model can be obtained from
the action (?7)} if we impose on initial conditions restrictions in the form

R € W(¢) >~ conat.

The model obtained describes the inflationary expansion {g — 0o } of an inhomogeneous Universe
{see also Ref. [22]). The second model one obtains under the restriction py = p2=..=p.
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Chapter 2

Billiard representation

Investigation of stochastic properties of the gravitational and scalar fields can be carried out
straightforwardly in the framework of the generalized BLK model. However there is an elegant
approach suggested, to our knowledge, first by Chitre [8] (sec also Ref. [38]) for the case of
mixmaster {Bianchi-IX) Universe and taken up recently in Refs. [24, 26, 29] in connection with
description of statistical properties of inhomogeneities and multidimensional generalizations. This
approach reduces the BLK model io a geodesic flow (bitliard) on a manifold of a constant negative
curvature. The properties of such geodesic flows are well studied [1]. There are theorems proving
ergodicity and mixing for geodesic flows on compact negative curvature manifolds [32]. The
simplest way to understand of why such stochastic properties arise is to consider the deviation
n* of neighboring geodesics which obeys the Jacobi equation

Dn

)

+ R vru'n™ =0,
where u* = dz*/ds is the unit tangent vector of a geodesic line and in the case of a constant

negative curvature K < 0 this gives

e )
Eﬂ' +Kn'=0.
This equation has solutiona in the form

ni = n.lie—‘\/—Tl +1&;Gn'

which demonstrate explicitly strong instability of the correspanding geodesic flow as s — o0 .
X the phase space is compact the deviations cannot grow infinitely and this results in the strong
mixing of geodesic irajectories. In what follows we shall not discuse these properties in move
details and just use the above expressions to estimate the rate of growth of inhomogeneities.
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1. Misner-Chitre approach

The main feature of the action for BLK model ia that it does not contain space derivatives and
iz split up in the sum of independent local actions describing the gravitational and scalar fields
at a parficular point of the coordinate manifold S . It is convenient to re-write the action (3.29)
in harmonic variablea. Then the action (3.29) takes the form formally coinciding with the action
for a continuous set of relativistic particles

j (P & N(BP 4 Ve — P )) & zdt, (1.1)

where r = 0,1, 6= 1,..,m, A = ﬁ , and new harmonic varisbles are related to the old
ones with the linear transformation
2
wm-D*
where § = 1,...,n — 1, and the constant matrix A} obeya the conditions

q‘:A;zj+z° , =&

SA=0 LA =n(-Dba, (1.2)
and can be expressed in the form
n{n —1)

E

; _J1 j>a,
(rj_Jé")i m_{O, J-Sc-

For the sake of convenience we present also the explicit form of this matrix

1

-1 1 .
iz Va3 V1)
A;=1’I'l(ﬂ—l) 0 —2'# - m
0 0 0 - (ﬂ - 1) m
Since the timelike variable z° varies during the evolution as z° ~ Ing, the positiona of the

potential walls turn out to be moving, It is more convenient to fix the positions of the walls, This
can be done by using the so-called Misner-Chitre-like variables [24, 28] (§ = 3)

1+ - o~ ¥ -
O _ _ T = — o =
= —¢ Ty F 2¢ -y v=iF|<t (1.3)
Using these variables, one can find the following expressions for the anisotropy parameters:
1 24%°
- — 37
Quly} = - {1 +1y y,} (1.4)
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which are now independent of the timelike variable +.

We note that in the vacuum case the expressions (1.4) give, under the restriction y| =1 .8
parametrisation of the standard Kasner exponents [5]. From (1.4) one can find the range of the
anisotropy functions ~2-2 < @, < 1.

Choosing the quantity 7 az a time variable, that is, using the gauge
-1
N =020 el 2r)/P)

we put the action (1.1} into the ADM form

I= j; {P’;;fgu, P"%z" - P"(P,g)} &'zdr, i (g
where the quantity
P(Py) = {43, B) + Vi) + (P} : (16)

plays the role of the ADM Hamiltonian density and
&= 21—y P )
The part of the configuration apace connected with the variables ¥ is a realization of the
{n — 1}-dimensionnal Lobacheveky space [1] and the polential V cutls » part of it. Thus, locally
{at s particular point of §) the action (1.6} describes a billiard on the Lobachevsky space. The

poaitions of ihe walls which form the boundary of the billiard are determined, as a result of (3.25),
by the inequalities (sce also (6, 10])

Ud==1+Ql_Qb"Qe20: “#b#c_l (18)

and the total mumber of the walls i :T\'%iﬁ‘ Using the matrix (1.2} one can find that the walls
are formed by spheres determined by the equations

g = P {7+ Bl +1-BL) =0,

B = (A" - & - 19,

(19)

where for arbitrary 4,4, ¢ we have B =1+ 2.,
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2, i’roperties of the Billiards

In the general case n points of the billiard having the coordinates

= 1 — — N -
Pos— A, A=(4..4)
lie on the absolute (on infinity of the Lobachevsky space). The trajectories which end at these
points correspond to the set of Kasner exponenta (0,...,0,1). When n = 9 there appear additional

isolated points S.. lying on the shaolute. The coordinates of these points are given by the vectors

Sum (A4 B+ Ty, apbie.

Despite the fact that these points lies on infinity the volume at these points is finite. To prove
thia fact let us consider the Poincare coordinates of the Lobachevsky space. Such coordinates can
be introduced ss follows

<]

+0
y+5)

T =2 T

, (2.10)

B

where the vector b define a point on the absolute (¥ =1 ). In terma of these coordinates the
metric of the Lobachevaky space takes the form

1(e7)' (7))
BGEEFD R
These coordinates give renlization of the Lobachevaky space in the form of a half-space {bn) > 0
. Indeed, they transform the unit disc 1 —y* > 0 into the half-space I —y? = ey 2 0.
The absolute of the Lobachevsky apace is now the hyper-plane (bn) = s = 0 and infinity of the
half space m, — co . Besides, the transformation (2.10) remove the point §' = -7 iato infinity
m —+ oo . Now it can straightforwardly be checked that in the case when the billiard has one

point on the absolute the volume of the billiard is finite. Indeed, removing this point on infinity
by the transformation {2.10) we find that the volume at this point is determined by the integral

V~amnf'63%f

which in the case of » > 2 is regular at the upper limit.

In the case of n > 10 in addition to the points P, and S... there appear open accessible
domains on the absolute [10, 28] and the volume of the billiard becomes infinite. I, on the
conirary, n < 10, the volume of the billiard is finite and the billiard turns cut to be & mixing
one. In order to illustrate the billiards we give two simplest examples in Fig. 1. The case n =3
in Fig. la coincides with the well-known mixmaster model and in Fig. 1b we illustrate the case
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n = 4 which was first considered in Ref. [6]. In Fig. 1c we illustrate also the billiard n = 3 in
the Poincare coordinates (2.10).

Now we show that, indeed, the billiards in the dimensions exceeding n = 9 become infinite.
Let us introduce the new set of variables connected with the old ones a2

#= 1-%; : (2.11)
Within these variables the absolute of the Lobachevaky space keeps the old position Jz[! = 1
and the walls become planes [see (1.4), (1.9)]. We note also thal in terms of these variables
the trajectories of the billiard become ordinary straight lines. Furthermore, it will be more
convenient to select a region on the Lobache\'lky space in which the anisotropy parameters are
in the increasing order

QD g Q‘.I. £ - S Q-—s é Qw—l
and which in restricted by only one wall [sce (1.8)] #() = 06.n-1,a-1. This region is formed by
the vectors of the type

i
it
=-v

where the parameters 0 < u* < 1 and the set of basic vectors is given by
&=L Tal A icn-2
ba-z = gy (A~ + A7), (212)

1 -
S = ﬁﬂ"-l

They are normalized so that
o(&@) =0 .

It is easy to find that the wall causes restrictions on the parameters u':
Yui<l.

The Euclidean norma of the basic vectors are

ef = "-'+.'"' ,t<n=2,

B = ) lena| =1

here we used the following property of the vectora A* :

n=1

YAAL =nn—-1)8% —(n-1).
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Now, it is casy to find that for n < & all basic vectors except £, have norms less than unity
and we have |#] <1 (the equality is achieved only when &= ¢, ;).

In the case n = 9 we get ] = e] = 1. All other vectors have norms less than unity and we
have the similar situation as above (i.e., [z| =1 only when £ =& and # = &).

In the case of n > 9 & number of basic vectors have norms exceeding unity, e.g., & for ¢ = [3]
or ¢ = [}]+ 1, where [}| denotes the entire part of the number 2. This means that the wall
in these directions lies outside the absolute of the Lobachevsky space and there appears an open
accessible domain. In other words, in these directions trajectories do not meet any obstacle and
run to infinity. This proves the statement made above.

3. Dynamics of inhomogeneities

The system (1.5) has the form of a direct product of homogeneous local systems. Each local
eystem in {1.5) has two functions ¢(z) and P™(z) as integrals of motion. The solution of this
local system for the remaining functions represents a geodesic flow on a manifold with a negative
curvature. As is well known, a geodesic flow on a manifold with negative curvature is characterized
by exponential instability [1). This means that during the motion along a gecdesic the normal
deviations grow no slower than the exponential of the traversed path ({ = {ge*), where the
traversed path is determined by the expression

o= [[a= [ e = gulmr

(3.13)

This instability leads to a stochastic nature of the corresponding geodesic flow. The system
possesser the mixing property [32] and an invariant measure induced by the Liouviulle one:

duly, P) = const x §(E — e)d"'yd' P, (3.14)
where E is a constant. Integrating this expression over ¢, we find

& lydlm

Ty ®15)

du(y.m) = eonat x ——-—
where i = g, Im| =1.
Since the inhomogeneous system (1.5} is a direct product of homogeneous systems, one can

simply describe its bebavior. In particular, the scale of inhomogeneity decreases as

. (g) ~ Nexp=s) , (3.16)
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and after sufficiently large time {a(r) — oo} the dynamical functions §(z}, () become random
functions of the spatial coordinates. In order to calculate different mean values one can use the
n-point distribution functions [24]

p‘l,---.ln(ylt e Yy ML, -y m‘} = (ﬁ E(y'.' - y(z‘})J(m. - "“(al))) L] (3'17)

=1

where the angular brackets can denote averaging either over an initial distribution or over a certain
coordinate volume AV 3 (M), The mixing results in the relaxation of initial functions (3.17)
to the limiting ones which have the form of the direct product of measures {3.15): dp = [T; dsi.
Thus, the asymptotic expressions for averages and correlating functions take the form

{m(=), m(")) = {yh 3'!} s(aiz')’

where |z — 2| 3 A? exp(—3).

Here it is necessary to point out the role of the scalar field in the dynamics and statistical
properties of inhomogeneities. As mhay be easily seen from (3.13), in the absence of the scalar field
(i.e., P" = 0} the traversed path coincides with the duration of motion [we have s = Ar =7--7p
instead of (3.13)). Thus the effect of scalar fields is displayed in the replacement of the dependence
for the traversed path on the time variable and, therefore, in the replacement of the rate of
increase of the inhomogeneities. This replacement does not change qualitatively the evolution of
the Universe in the case of cosmological expansion. But in the case of a contracting Universe
the pituation changes drastically. Indeed, in the limit + — —oco from (3.13) we find that the
traversed path s fakes a limited value ag and therefore the increase of the inhomogeneities turns
out to be finite. Ome of the consequences of such behavior is the fact that at the singularity
the functions § and F take constant values. In other words, in the presence of scalar fields the
cosmological collapse ends with a stable Kasner-like regime (2.17). This fact may be seen in
another way. Indeed, in the limit 7 — —oo the scalar field gives the leading contribution o ihe
ADM Hamiltonian (1.6) and P? does not depend on the gravitational variables.

(3.18)

The finiteness of the traversed path s{r) leads, generally speaking, to the destruction of the
mixing properties [32], since for the establishment of the invariant measure it is necessary to
satisfy the condition s; — co. Evidently, this condition requires the smallness of the energy
density for the scalar field as compared with the ADM energy of the gravitational field [the last
term in (1.6) in comparison with the first ones]. Indeed, in this case sy is determined by the
expression sy = —In F5° | which follows from (3.13), and as P™ — 0 one gets s, — co {ie., s
can have arbitrarily large values).

Thus, in the case of cosmological contraction one may speak of mixing snd, therefore, of the
establishment of an invariant statistical distribution only for those spatial domains which have a
sufficiently small energy density of the scalar field.
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4. Estimates and Origin of cellular structure of space

In this manner the large-scale structure of space in the vicinity of a singularity acquires a quasi-
isotropic nature. The distribution of inhomogeneities is determined by the set of functions of
the spatial coordinates e(z), l4(z)}, and also RE and T which conserve, during the evolution,
a primordial degree of inhomogeneity of the space. The scale of inhomogeneity for the other
functions decreases as ) = Age~*"). In this section we give some estimates clarifying the behavior
of the inhomogeneities. For simplicity we consider the case when the scalar field is absent.

To find an estimate for the growth of inhomogeneities in synchronous time ¢ {di = Ndr) we
sct = 0. Then, for the variation of the variable T one may find the eatimate

V3 ~ exp(~ e T ~ POt

where the point ¢ = 0 corresponds to the singulasity. According to (3.16) the dependence of the
coordinate scale of inhomogeneity on the time ¢ takea the form

2 3 29 In(1/go)/ In(1/g)

in the case of a contracting Universe (g — 0) and

A £z doIn(1/g)/ In(1/g0)
in the case of an expanding Universe.

The rapid generation of smaller and smaller scales leads to the formation of apatial chaos
in the metric functions and the large-scale structure of the Univerae acquires a quasi-isotropic
nature. Speeds of the seale growing (Hubble constants) for different directions turn out to be
equal after averaging out over spatial domains having a sise 7 Ao, Tndeed, using (1.4), (3.15) one
may find expressions for the averages < @, >=1/n.

In addition, it is necessary to mention one more characteristic feature of the cscillatory regime
in the inhomogeneous case. This is the formation of & cellular structure in the scale functions @,
during the evolution which demonatrate explicitly the stochastic process of the development of
inhomogeneities [21]. Indeed, let us consider some region of coordinate space AV. The functions
# define a map of that region on a domain B € X. During the evolution the sise of the domain
¥ grows = e%") and E covers the billiard K many times. Each covering determines its own
preimage in AV. In this manner the initial coordinate volume turns out to be split up info
*cells® AV = |;AV;. In every cell AV; the vector § takes almost all admissible values i € K
and that of the functions Q. (Qa € [Qmin, 1] Where Quin = _l*;;g};%ﬂl). To illustrate this
process let us consider the case n = 3. In this casc it is convenient to use the Poincaré model
of the Lobachevsky plane on the upper complex balf-plane H = {W =U +iV,V > 0} [see fig.
}{c)]. The line V = 0 is called the absolute and its points lie at infinity. Geodesics in H are given
by semicircles with centers on the absolute or by rays which are perpendicular to the absolute.
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The billiard in the region K € H, bounded by the geodesic triangle 8K =[| W |= 1,U = &1].
The area of the billiard i equal to x. The motion can be continued to the whole plane H. For
this aim one needs to reflect the domain of the billiard with respect to one of the boundary walle
and make the iteration of such procedure. In this way the Lobachevaky plane will be covered by s
set of domains K™ , each of which is connected with the region of the billiard X by a one-to-one
mapping. During the evolution sn arbitrary initial square T° begins to grow and covers more
and more domains K= [see fig.1{c)].

The cellular structure pointed out above turns out to depend on the time and the number of
the cells incroases as N rs Npe'™}, However, the situation is changed if we consider a contracting
space filled with a scalar field. Then the evolution of this atructure in the limit g — 0 enda,
because the functions @, become independent of time, and on the final stage of the collapse one
would have a real cellular structure [21].

1t is aleo necessary to note that from the point of view of the n—dimensional volume AV
every cell is topologically a torus or a cylinder. However in the multidimensionat case we should
take into account the fact that the physically observable space has the number of dimensions
equal to three. Then from the point of view of & 3— dimensional volume every cell turns out to
be bounded in every direction, Le., it ia topologically a sphere.

In wpite of the isotropic nature of the spatial distribution of the field the large local anisotropy
displaya itself in an anomalous dependence of spatial lengths for vectora and curves upon the
time variable. Indeed, a moment of the scale function < g™9« > (where M > 0) decreases when
g — 0 as the Laplace integral

< g™ le guo. (@040, ,

where p(Q.) is the distribution which follows from {3.15). The main contribution to this integral
ugwenbythepmntq Qmin .In the case n > 3 in the limit (@ ~ Q_.,,)—-oOonecauﬁnd
Q) = C(Q — Qeuin )™ 2, where (' ia & constant and we obtain the estimate

Qmin
(s4%) =~ ( Mﬂ: TP {4.19)

This expression shows that for n > 3 average lengths even increase while approaching the singu-
larity. The casze n = 3 must be considered separately. In this case we have Qi = 0 and the
explicit form of the distribution function p{Q,), a# follows from (3.15), is

oQ@)= 2(@(1 - Q) a(1 +3Q).
As Q <1 one has p(Q.) = 3(Q.)"** and, thus, in the limit ¢ — 0 we get the estimate [21]

(949} = (M1a(1/g)) /.
S0 in the case n = 3 the averaged scales are decreasing when g — 0 but only logarithmically,
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Fig. 2.1 : {a), (b} The regions of the billiards in the cases r = 3 and n = 4, respectively.
The points Pi lie on the absolute i#1® = 1 of the Lobachevsky spaces. {c} The upper
complex half-plane represents the two-dimensional Lobachevsky plane. The painted
region K represents the billiard. K, is a set of images of K. £° is an arbitrary initial
square. X' is the same square after the time T.
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Chapter 3

Quantum cosmology

1. introduction

In this lecture we considered the behavior and properties of an inhomogeneous gravitational field
in the vicinity of the singulatity from the quantum point of view. We shall use the models
constructed in the previous lectures. These models are the generalized Kasner (GK) model and
the BLK models describing in the case of n < 10 the general oscillatory behavior of the metric
near the cosmological singularity.

Beforehand it is necessary to recall why these models turn out to be suitable in quantum
description of the singularity. As is well known there are two different types of the evolution of
the Universe [33]. The firat one is the normal evolution when the Universe decelerates 4< 0 e,
@ ~ 1% with a < 1, (where a is the acale factor of the Universe and for the sake of simplicity
we suppose the Universe to be isotropic one). The second type is the inflationary evolution when

_ the Universe accelerates 6> 0 (a > 1). We present a possible alternation of these types of the
evolution of the Universe on Fig 2.

It is important that in the very beginning the expansion of the Universe is always described
by the first type of the evolution only (the normal evolution). Therefore, inhomogeneities of the
mettic acquire large-scale character § > I; and can be described in the framework of the GK or
BLK models. Indeed, as was shown earlier the inhomogeneities behave as [; ~ a and in the case
when the Universe decelerates [ ~ 4 3 [y~ ¢ an t — 0 (with a < 1).

It is alao necessary to mention the fact that when quantizing those models we meet the main
difficulty of quantum gravity , that is, the non-renormaligability. To overcome this difficulty
we consider simply short distance fluctuations to be omitied. In other words we shall assume
implicitly the existence of a sufficiently small cut off parameter in Fourier transforme of fields
and, therefore, the space coordinates will take & discrete values. This will allow us to regularize
all expressions which appear in inhomogenecus cases.

Anocther important fact is that the Kasner-like parametrization of dynamical variables divides
these variables into two groups. The first group contains scale functions of Kasner vectors and
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their momenta and behaves near the singularity like a set of ordinary coupled scalar fields {at
least from the point of view of their contribution in the dynamics}. In conventional gravity
(n = 3} just this group represents, with the Hamiltonian constraint being taken into account, the
true gravitational degrees of freedom, for the momentum constraint relates tightly the residual
variables with the scale functions. In the presence of additional dimensions the second group
contains residual variables only a part of which turns out to be non-dynamical. However this
group has behavior like a net of vector fields and, therefore, in leading order it gives no or only an
implicit contribution to the dynamics of the metric (in particular, just the second group variables
provides the existence of potential walls in the BLK models).

Thus , when quantizing the inhomogeneous multidimensional models we do not take into
account the presence of the second group variables as we do for the ordinary matter having an
equation of state £ > p . In other worda we shall consider only scale functions to be quantum
degrees of freedom and do not consider the rest of degrees of freedom at all.

2. local dynamics of inhomogeneous models

2.1. Quantization. The Wheeler-De Witt equation.

As it was shown the action for GK and BLK models (1.1) taken the form formally coincided with
the action for a continucue set of relativistic particles (in the canc of the GK model ¥, =0)

I= L {P,‘:;; ~ X (P} + Vo (3) - p;)} &zdt, (2.1)

whete r =0,..,n,i=1,...,n, X = q‘%w .

The configuration space M of the system {2.1) (called also superspace) is represented in the
form of the direct product M = [],.g M,. Moreover, every local space M. is the ordinary
1+ 1.dimensional pseudo-Euclidean space, for the kinetic term, that determines a metricon M,,
turns out to be coincided with that of for the ordinary fiat n + 1-dimensional pseudo-Euclidean
spacctime manifold. The fact that M, has the pseudo-Euclidean struciure is connected with
that the set of scale functions 2* contains one odd field variable z* which reflects the freedom in
the choice of & cosmological time. Just thia variable has timelike character and can, in quantum
cosmology, serve a8 an inner time variable.

Since, a3 was mentioned above the action (2.1) resembles the action for a continuous set of
relativistic particles, quantization of such a system may be carried out in the complete analogy
with that of relativistic particles [42]. The serc-energy Hamiltonian constraint leads to the set of
the Wheeler-DeWitt equations [12]

(A4 U, +ERYR =0, =zeSb, (2.2)
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where ¥ is the wave function of the uni\.m'se, A, denotes a Laplace operator on M, : A, =
712384\/—?6"’35, Gap ia the metric on M, determined by the interval

ST(a) = &((&‘(w})’ = (&:°(=)") (23)

P, is the curvature scalar of M,. Thevalueoffnhouldbechooenuf:%‘topmvidea

conformal invariance of Eq.{2.2} which reflects the arbitrariness in the choice of the lapse function
A . Indeed, the transformation

Gap — Gag = e 0Gn, ¥ A

maps the Eq.(2.2) into
n—1
4in

and the theory becomes independent on a particular choice of A.

(-4, + U, + AL N

To solve the equation (2.2} we shall consider a lattice approximation. To this end we shall
suppose the existence of a sufficiently small minimal scale of inhomogeneity for all fields Ly, , 80
that the coordinates 2 will take discrete values only. The continuous limit one obtaine tending
Lwin to sero, though, from the other side, one may think of the lattice model as of a background
mode] and treat the scales less than L., as small perturbations.

The aystem of equations (2.2) turns out to be uncoupled, for each from these equations contains
a get of functions which are specified at a particular point = of § . In the classical case thin
constitutes the condition pointed out that the inhomogensities has only large scales §; % I . In
quantum theory such inequality must be fulfilled for mean values {£) > {{,} and, therefore, this
implies an appropriate restriction on quantum states of the fields. In what follows we shall call
the sets of degrees of freedom M, at a different points of § as £—sets. Therefore, the space H
of solutions to this system takes the form of the tensor product of spaces H, (H = [Ioes He) 28
that of M, where H, is the space of solutions to & particular 2— equation ( 2.2). Accordingly,
all 2—sets of degrees of freedom may independently be considered. Therefore, at first it will be
convenient to work out the probability interpretation and all the technique on the example of a
one local z—set of degrees of freedom and after that to generalize the consideration to the case
of all degrees of freedom.
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2.2. The space of solutions to the WD'W eqguation for a particular z-set of degrees
of freedom.

Every local z-equation (2.2) admits the conserved current

Ja(T,0) =[PV F - FV,0 (24)
which may be used to determine the inner product in the spaces H,

< lx>=i [ Jale.xMEL, (25)

where V, denotes a covariant derivative on z-metric (2.3), I, in an arbitrary space-like surface
on M, ,and dT4 = ¥ n", with 45, being the volume element in E,, and n* being the timelike
unit vector normal to E,. The main property of this inner product is the independence of the
choice of hypersurface I, .

In the case of generalized Kasner model the potential ¥ is absent and the complete set of
solutions to the WDW equation (2.2} can be found exactly. Those are the well known modes of
free particles moving in n + 1 - dimensional spacetime
1

e~

1y = (20 ; (2.6)

with po = [pl.

In the case of BLK model to obtain solutions in an explicit form turns out to be impossible.
Nevertheless, such solutions can be constructed formally. Indeed, let us consider the Misner-Chitre
like variables (§F =97, j =1,..,n—1)

0 —1-1 +,= = —-r i =
- - =|Fl<1.
z iy TR 2e -3 v_lvl_l
In terms of these variables the potential V(z) becomes independent of the timelike variable =
and the supermetric takes the form

457y e"(Sz")’ _ {51.)3)_ {27

61‘(’)’ 4x' (( :)3

For the sake of simplicity in what follows we zhall use the gage 4X%e* =1 .

As was pointed out earlier the part of the configuration space M, related to the variables
is a realization of the (n — 1)-dimensional Lobachevsky space and the potential V., cute a part
K oofit

U*=1+Qu“ql_0=20' a¢b#c
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which in the case 1 < 9 has a finite volume. Let us suppose that there is & set of solutions to the
eigenvalue problem for the Laplace - Beltramy operator

(By+ 45+ (- ) —Joi(z) =0, @slex=0, (2.8)

where the Laplace operator A, is constructed via the metric df* = hydy'dy’ = é‘% and
J collects all indexes numbering the eigenfunctions ;. In the case of n < 10 the region K
bas & finite volume and J takes discrete values (J = 0,1,2,...), while for n > 10 the volume
of K ia infinite and the spectrum of the Laplace - Beltramy operator becomes continuous one.
Unfortunately this function cannot be obtained in an explicit form but , nevertheless one can find
them numerically with any degree of accuracy. The eigenfunctions ; obey the orthogonality and
normalization relationa

(p1,07) = _L i W) esly)dnly) = 8o, (2.9)

where 1 g1 g
du(y) = E\/_hd""v = TW )

and ¢ is the volume of X . The completeness conditions for this functions has the form

. _§ly-¢)
)_?,w(r)w(v‘ )= 7

Then a complete orthonormal set {u,, u;} of solutions to z—equation (2.2) conatitute functions
of the form

Uy = erp(— %T)XI’(T)Q! (’! 3) 1

(2.10)
By (y,2) = (2x) " ps(y) explies™)

where p = (J,¢). Functions x,{r) satizfy the equation following from (2.2):

dixp Ae -

-'d--r_j + u’(r)xp =1{, .(‘.I’) + e (2.11)
with the normalisation condition

e DG, 12
% dr X3 -t (2.12)

and are expressed via Bessel functions. Thelmtla.lcondxhonatoEq@ 11) at & moment 7, are to
be taken in the form

1 — i (n _
xp(ﬁ)—m, %4 (10) = —iay (10} xp{70) , (2.13)
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which imply that functions ), are positive frequency functions at the moment 7, .
The set of solutions (2.10) is orthonormal in the sense of the scatar product (2.5), i.e., they
satiefy the relations

Cup |8y >= = <ug | g >= by, <ty |ug>=0. (2.14)

Thus, an arbitrary solution f to the locsl Wheeler-DeWitt equation (2.2) can be represented in
the form '

=Y Lu+ AZul, {2.15)
= .
where A:' are arbitrary constants which are to be specified by initial conditions.

2.3. The Hilbert gpace and the probability interpretation

Since the norm determined by the scalar product (2.5) turns out to be sign-indefinite we face up
with the difficulty of the probability interpretation. The simplest way to define a positive-definite
inner product ia to separate & submanifold H} on the space H, which is of "positive frequency”.
If we suppose A7 = 0 in (2.15), then the normalization condition for f takes the form

ff=24&w, <flf>=Y |4 =1, (2.16)

sud meets no difficulties. Indeed, H} is & linear space and the jnner product has all necessary
properties required for a acalar product

<xlp>=<x|p>",
<xitxalpr=<xle>+<xzle>, (2.17)
<x|x>20,
the equality in (2.17) is reached only when x = 0. Thus, the subspace of physical states H}

becomes the ordinary Hilbert space and we can adopt the standard probability interpretation
[42].

In the absence of the scalar field (i.c. when € = 8) the positive frequency modes (2.11) takes
the form

e—ik,r'r

X = gt (2.18)
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and the restriction on physically admissible states (2.16) is equivalent to the use of the ADM
procedure for quantization of the gravitational field [2]. In other wordns, the same theory will be
obtained if we use for quantisation the action functional in the form (1.5):

I=f{ﬁ£§'— Po(y,P)}d-r

with Py(y, P) = /e¥{§, P) + V[y] being the ADM Hamiltonian density. Indeed, in this case the
wave function (2.16) obeyn the first-order wave equation

W [ fr>=R]|fr>. (2.19)
and the states (2.14), (2.18) turn out to be cigenstates for the operator Py
Pouy = kyuy : (2-20)

and define the stationary states of the gravitational field. We stress, however, that the goomeiry
described by these states is nonstationary, for the metric functions contain the timelike variable
7 in an explicit form.

Now we recall one important fact which ia known from the particle physics and concerns of
physical observables. The fact is that the zeroth component of the super-current (2.4) J%z)
cannot be interpreted as the probability density to find the field at a point 2* of a hypersurface
I of the configuration manifold M, , for despite the fact the inner product is positively defined
for states (2.16), nevertheless, the current density is not. In order to construct the probability
density we have to use the construction suggested by Newton and Wigner (see Ref. {42]). In the
case when the scalar field is absent the state describing the field localised at the moment = at
the point y* € £T ¢ M, is given by the expression

&(y,7)= Z,: JEsus (y, 7 us. (2.21)

We note that these statea can be found by solving the eigenvalue problem for the operator of
the field coordinate Z . In the case of Kasner model positive frequency solutions of the WDW
equations are the ordinary plane waves (2.6} u, = (21')"” #e_‘" and the expression {2.21)
yielda

800 (440) = [ Eov ) 0) = amot- ()

from which one can see that the localized atates do not coincide with the Dirac’s delta-function.
Accordingly, if the field is described by a wave function ¥ = ¥,y AJu; then the probability for
the acale functions to be localized at the point ¥ is given by

P(y,7)= (2.} .
Thus, for an arbitrary chosen initial state we get the probability density in the form

Pl = |§ Vs () 4
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2.4. The ambiguity in the choice of the Hilbert space
It is clear that the procedure of the choice of the Hilbert space ( H} in the H.) is not uniquely
defined.

In a general case the Wheeler-DeWitt equation contains the timelike variable in an explicit
form and, therefore, it is imposasible to classify solutions by means of signs of frequencies. The
solutions (2.10) being of "positive frequency” at a given moment of time 1y (2.13} are a mixture
of both frequencies at an arbitrary moment. This happens, in particular, when we include in the
consideration a matter (e.g., in the presence of the scalar field).

Thus, instead of the set of modes (2.10) one can use another complete set of modes {v,, v;}
connected with {2.10) by a Bogoliubov transformation

vp = 3 {aputy + Bpetig} (2:22)
P
where the coefficients o,y and f, satisfy the relations

T {orere — eye} = b
Lo {opldyy — apobp} =0 ,

(2.23)

which follows from the condition that the new set (2.22) is orthonormal. Making use the new set
(2.22) we can determine & new Hilbert space H¥, which constitutes vectors of the type

F = Ecrﬂr- (2:24)

Tt is clear that the apaces H* and H¥ are coincided in the case when all coefficients £, equal
to zero, However, if amongst of Sy there are some different from zero then H} and :E-IE do not
coincide and we will have thus two unitary nonequivalent ways to construct & quantum theory.

We note that similar ambiguity ia also contained in the ADM approach, since the ADM
Hamiltonian can be chosen by different ways {one can choose an arbitrary timelike variable as
a time and take its conjugate momentum as a Hamiltonian). We also note that this ambiguity
is of principal an inherent difficulty of quantum cosmology, which apparently can be only solved
in the framework of third quantization. In particular, the following fact shows that the third
quantization is necessary. As well kmown in quantum gravity there is a principal restriction of
the observability of physical fields (e.g., see [11]), and this restriction has complete analogy with
the well known restriction on the observabilty of coordinates of relativistic particles.
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3. The presence of matter and the case of all degrees of freedom

3.1. The presence of the scalar field. Mixing of frequencies and third quantization.

Ax was pointed out above in the presence of a scalar field the Wheeler-DeWitt equation turns
out to be explicitly time-dependent, see, Eq. (2.11}. In this case there is no & unique way
to determine pogitive frequency sclutions (the mixing of frequencies is said to occur). In this
connection the procedure of choice of the Hilbert space H} ia also ambiguocus. In the analogy
with the relativistic particle theory one can attempt to solve thia problem in a framework of the
second ("third®} quantisation [41, 19, 36, 23]. In this section we shall consider a homogeneous
case, i.e., the field variables z to be independent on space coordinates. For the sake of simplicity
we put the spatial volume V (§) = Jyd"z to be equal to unity.

Third quantisation represents also independent interest, from the point of view of two possible
applications. Firstly, as an example of a theory allowing to describe some simple topclogy changes
(in this case we mean the changes of the number of disconnected copies of 5). And secondly, it
ia a theory giving & possibility to describe the process of "quantum creation of the World from
nothing® proposed in [13) (see [23]). Here, we will discuss the second possibility only.

In this case we have just one Whesler-DeWitt equation (2.2)
(-A+U+¢PR =0, (3.25}

which can be obtained from a variation principal if one writes the action functional for the wave
function in the form

§= % [(@*0,9°85% ~ (U +€P) | 9 PG5 (3.26)
A complete orthonormal set {u, ,u3} of solutions of eq. (3.25) constitute the functions (2.10),

(2.11). In order to account for the mixing of frequencies in an explicit form, it is convenient to
represent the function x{7) ia form

Xp = () Plag(r)e ™% + By{r)e™} {3.21)
Brxy = +{uwp/2) [ cip(7)e " — By(1)e®], (3.28)
where

0,(r) = j: wydr, (3.29)
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and a,{r} and B,(r) sre complex functions to be determined which obey the initial conditions
{2.13)

a0} =1, By(r) = 0, (8.30)
which denotes that the modes u, are of positive-frequency in the moment 7 = 7g. The represen-
tation of &, in the form (3.28) removes the arbitraziness in the determination of two functions

o and § via the single functicn . The condition {2.12) provides the validity of the equality

[op[* =B P=1 {3.31)

for an arbitrary r.
When a third quantiration is imposed the wave function of the universe becomes a field

operator and can be expanded in the complete orthonormal set (2.10) of solutions of Eq.{3.25)
{for the sake of simplicity we assume below that ¥ is real):

¥= Z'j Ay + Aty (3.32)
where the operators A, and A} obey the following commutation relations

(Ae: A43] = &5 (3.33)
The Hamilton operator for quantum field is determined by the eguality

H(r)= L...... oo T)GV =Gz (3.34)

where &55 is the "superenergy-momentum® tensor specified on M (on the configuration manifeld)
which can be obtained by variation of action (3.26) on metric GAP.
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Since the basis functions (2.10) obey the initial conditions (3.30), Le., are of positive-frequency
in the moment r = 7o, then the decomposition (3.32) determines a particle interpretation at this
moment. In particular, at this moment of time, a vacuum state determined by the equalities

A, [0>=0 (3.35)
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for arbitrary p, coincides with the ground state of the Hamiltonian (3.34). In sn arbitrary
moment of time 7 # 7; the modes {2.10) contain both the positive frequency part and the
negative frequency part as well {3.27) and the vacuum determined by {3.35) does not coincide
already with the ground state of the Hamiltonian (3.34). In other words, the state | 0 > for
T # T describes already an excited state of the quantum field %. In order to determine the
ground state of the Hamiltonian (3.34) in an arbitrary moment of time we introduce the field
operators b,(7) and b¥(r) depending of time [15]:

by(r) = ap(7) A + Bi(T)AT
5 (r) = a}(r)47 + By(r)4,

where the functions o, and B, are given in (3.27), (3.28). The conditions (3.34) lead to the .
following commutation relations of the operators k() and b¥(r}:

(3.36)

Byl B3(7)] = &5 (3.37)

The Hamiltonian {3.34) being expressed via these operators takes the diagonal form
H(r) = % 3w ()b (r )0 (7) + 5 (r)be(7)] (3-38)
and its ground state determined by the relations

by(r) (0,7 >=0 (3.39)

turns out to be depending of time variable. It is obvious that in the moment 7 = 1 the
ground state (3.39) coincide with the vacuum state that is determined by the relations (3.35),
ie, |0 >=|0,7 >. In any arbitrary moment the state | 0 > differs from (3.39). Then in each
p-mode it contains

Ny(7) =< 0| B (7)b(r) | 0 >=] Bo(r) |* (3.40)

field quanta.

In this manner the operators b,(r) and 4¥(7) define the depending of time particle interpre-
tation [15). Then {3.40) may be interpreted as the process of quantum creation of field quanta
(universes) from "nothing® [41, 23].

Let the field ¥ be in the ground state in the asymptotic region of M, corresponding to a
singularity. Then the initial conditions {3.30) are specified at the moment 7, = —oo. Sclutions
(2.11) satisfying the initial conditions (3.30) takes the form

olr) = 3(n)" explrks/2)Hay(B), (3.41)
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where Hy,(R) is the Hankel function, and R = ee". The dependence on time of functions a,
and B, is determined by (3.27), (3.28), while the dependence upon time for the spectral oumber
density of universes produced is determined by the expression

Ny(r) =] Bp{r) ['= (2u0p) (1 Oe/ 07 | 4 | xe ) - 1/2, (3.42)

where x,(T) in given in (3.41).

The expressions (3.42) can be significantly simplified in the case when the modes satisfy the
inequality:

€€ kpe'. (3.43)
Then the functions a, and f, tend to constant values

ap = {exp(mks)/2sh(ak;)| /6%

(3.44)
By = {exp(—xks)/2ah{xks )] 106,
where 0 ate constant phases, and (3.42) takes the form
N, = (exp(2vks) — 1), (3.45)
which formally coincides with the Planckian distribution corresponding to the temperature Ty =
1
=

Since the number of universes is & variable quantity, a description of & single universe cannot
be given by a pure state!_ States of the universe will be described by a denaity matrix. Making
use of (3.42) we can find that the densily matrix describing a Universe created from *nothing”
takes form

p=NUD)Y [ty > Ny < iy, (3.46)

where N is a normaliration constant which coincides with the total number of created oniverses
(which can be estimated as N{r} s Npe™), and '

| up >= (4xuwp) /7 exp(r/2)e®* p(y) exp{ics™). (3.47)
Here we note that the positive frequency functions (3.47), generally speaking, satisfy the Wheeler-
DeWitt equation only under inequalities {3.43).

11n the framework of the theory describing a single universe this makes impossible to introduce the probability
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3.2, The case of all degrees of freedom

Now the generalization to the case of all degrees of freedom may be carried out straightforwardly.
The positive frequency sector H* in the total space of solutions H we determine as the direct
product of positive frequency local submanifolds H+ = [l.es H; - Thus, the wave function takes
the form

V=3 Fyalpisp Uiy = 11 i) (3.48)
Ioi=)) scS

with the scalar product induced by (2.14)

(xl¥} = 3° BrayAnis : (3.49)
[pé=3]

where x = ¥ ByyUpsy and 9§ = 30 App)Uip(a) are arbitrary vectors lying in Ht

Despite that Eq. (3.48) and (3.49) give a well defined probability interpretation in the inhomo-
geneous case, it is necessary to mention that the procedure of the choice of H* in the H acquires
an additional ambiguity. Indeed, now the Bogoliubov transformation (2.22) relating different sets
of modes of local manifolds H, can contain dependence on spatial coordinates z €

Ypa = ); {a(2)pyua+ B(2)yus) {3.50)

which will determine a new total Hilbert space H = ]'[.Esfﬁ and what is still worse we are
already unable to relate basises in these spaces by a Bogolubov transformation of the type (3.50).
Therefore, the probability interpretation and all relevant constructions turn out to be crucially
dependent upon the particular choice of the physical sector H* in H .

3.3. The BLK inhomogeneous model, ntationary states and statistical properties of
metric inhomogeneities

Now we consider properties of inhomogeneities of the metric in the case of The BLK model. For
the sake of simplicity we shall consider the case when the scalar field is absent and the number
of spatial dimensions less than ten [in this case the configuration space ia bounded in terms of
the anisotropy parameters @]. In this case to obtain solutions in an explicit form turns out to
be impossible. States of the field will be represented by a set of positive-frequency modes for
the Wheeler-DeWitt equation, and will have the structure of the direct product of modes for
homogeneous field : | [J(2)] >= [I,cgtss) - In the case of n < & these modes are classified by
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an integer-valued function J(x}. As well as in the case of & particular H, these states are the
eigenstates of the ADM Hamiltonian density

Po(z) {[F ()]} = ki) [V(2)) {3.51)

and they may be conaidered aa stationary states. The ground state of the aystem [0} (the vacunm
state from the point of view of field excitations} ia given by the direct product of eigenfunctions
corresponding to the minimal value &; snd has a bounded energy density ko < oo.

L&t us consider now the properties of inhomogeneities of the field. The basic vanables of
the theory which characterize the inhomogeneities gravitation field are the operator functions
z(z) and their momenta p{z}. A state of the field is described by either & wave function | ¥ >
or a density matrix 7 (this depends upon that pure or mixed state the system is given in).
The apace distribution of inhomogeneitiea of the field can be described by different mean values
< 3(z) >, < p(z) > of the operators and corresponding correlation functions of < #i(2), 2(=') >
type. The brackets < - > denote the average over the state of the field.

In comirast to the classical theory, expressions for these quantitiea are essentially dependent
upon the choice of the initial eonditions (upon the choice of an initial quantum state). It turns
out that the properties of inhomogeneities are "most classical® in the stationary states {[J(z)])
{or in the states described by a stationary density matrix). it is sasy to obtain the expressions

< z{z} >=<p(s) >=10,
. y (3.52)
< 2z}, 2 (2) >= (2 )ita) 8(z,9)

for these states, where (2°z%); = 35, (#'), (z“) , and 7y, is a matrix element for the local
space H} (3}, =< up | # | uy >). The delta-function appears in {2.2) due to the fact that the
wave function |[J{z)]} has the structure of the direct product (3.48) and we use obvious properties
of atationary (localised in terms of z) states z;5 = p;7 = 0.

{From (3.52) one can see that the intensity of fluctuations depends upon the space coordinates.
This dependence disappears only for J(z) = J = const (e.g., for the vacuum state J = 0},
Obviously, expression (3.52) should converges, in the asymptotic J — oo, to the formulas obtained
in the classical case (3.18) and the coordinate dependence should disappear.

Nonstationary states display more essential differences from the classical averages. For exam-
ple, consider the state | f >= f¢ f(z) | 1, > d*z which describes a unique excitation distributed
in the space with the dennity | f(z) [*. Then using (3.51) one cbtains

<fl=z)| f>=<f|Ba)1 £ >=0, | | (3.53)
_ (#2),, LAY P + (#8%) 1= | A ) 2 =25
< fl 3‘(3:1)'1I {#2}| f >=
F@)f(es) (554),, + FlEdf() (#8), , s

instead of (3.52).

.
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3.4. Estimates and dynamical reduction of extra dimensions in Inhomogeneocus
Kaluza-Klein cosmological models

In this manner properties of inhomogeneous models depend crucially upon the choice of initial
data. Despite this when n < 9 , near the singnlarity the behavior of lengthe in time shows
universal features. For mean scale factor we get < g; >=< g9 >~ cg9% as g — 0, where g i
the metric determinant which near the singularity may serve as a time variable, Qi = —ﬁ in
the minimal admissible value of the anisotropy parameters Q; and ¢ is a slowly varying with ¢
function, collecting quantum corrections, and differing from the classical one. The fact that the
exponent Qumin is negative does not mean that the quantum theory avoids the singularity. Those
quantities describes the behavior of lengths in the vicinity of the singularity and is a resuit of
the strong local anisoiropy. It follows simply from that the main contribution in averages gives
just those regions of the configuration space on which @ is negative. When we are interested
in averages of the anisotropy parameters {the Hubble constants for different directions) we shall
find that they are almost always positive, e.g. for stationary states we have < @; »>= % like in
the classical theory, however in the general case the atate being arbitrary chosen gives < @; > to
be an oacillating function of g . The more adequate quantity may be the volume element for an
arbitrary chosen hypersurface =™ . In particular for m=n weget <V >= g~ 0as g =90,
therefore, from the n-dimensional point of view, the cosmological collapse is inevitable,

To investigate the behavior of m—wquares we, at first, recall important formulas related to
the billiards. As in the previous section we shall consider vacunm case {below we follow Refs.
[30, 31]).

The positive frequency solutions to the WDW equations have the structure (2.10)

us = g exp(=ik)esty) , (3.54)

with @; being aolutions to the eigenvalue problem (2.8)

By +8+ 2=y -0 —o
] 7 (e} =0 ¢slx=0. (3.55)

In the case of n < 10 the billiard K has a finite volume and J takes discrete values (J =
0,1,2,...}), while for n > 10 the volume of X i» infinite and the spectrum of the Laplace -
Beltramy operator becomes continuoun one. Accordingly, in the first case the eigenfunctions ¢
are localized in terms of the anisotropy parameters @ . An arbitrary wave function ¥ describing
the gravitational field st the point = is represented in the form (2.16)

‘P:EAJ‘BJ, ‘(‘I’*‘?}=Z:IAJI'=1,
J
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where Ay are arbitrary constants which are to be specified by initial conditions. We recall that the
atates (3.54) play the role of stationary atates (though they describe non-stationary geometries).
The probability for the scale functions to be localized at the point y € M. is given by

P{y, T) = “‘ (3"7) ana

with &(y,7) = T, R} (¥, 7)6s being the Newton-Wigner localised states (2.21). Thus, for
an arbitrary chosen initial state we get

] ¥
Pyr)= ]g: @u;(v.r)m| - l); Zyemslikrmianas]

Now let us consider an arbitrary m-dimensional hypersurface =™ C §. The volume element
for this hypersurface has the form

V™ = gy 8 N N O™,

where 1=
Hoyyeyom = 3 ZQ«
=1

and C,,, . a,. 8re arbitrary constant functions of spatial coordinates. Thus, the behavior of this
element in time iz determined by the quantities g~ . In quantum theory such quantities are
operators and have to be averaged out,

Near the singularity (¢ — 0) when n < 9 the main contribution in the mean value {g*=)
is given by a small neighborhood of just that point of the spacelike part K of the configuration
space M at which the exponent py, takes the minimal value. Such point lies on the boundary of
8K and the values of such exponents is given by

. _ — __m(ﬂ_m_z)
Hm = H (e, - 2n+m)
form <n—2and pf ;= uh, =0and g, =} where Zm are the basic vectors (2.12).
In particular, 24, gives the minimal possible value of the anisotropy parameters Q... . Since
#s(8K) =0, in the neighborhood of K we have p; = gs(3 —~ 5*) and the probability density

is (we suppose n > 3)

Pe(wy= [ Pr,7)8(p— n(o)) VA 'y = B r) (2 — 47"
a3 p — p*. Thus, we find that in the limit g — 0 moments of the function g*= are given by
(L>0) :

o L
(@)} = D (L,7) @,&L’@))ﬂf . (3.56)

.
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where g, = ¢{r,¢"} and Dy, is slowly varying in time function which collects information of the
initial quantum state. Since pf < 0 for m < n —2 | one can see that an arbitrary hypersurface
Z™ whose dimension less then n — 2 expands while approaching the singularity. In this sense
one can consider the cosmological collapse to be the mechanism reducing the number of spatial
dimensions down to n — 3 . On the contrary, in the early expanding Universe an arbitrary
bypersurface =™, whose dimension less than n — 2, contracis. We stress that this does not
solve yet the problem of reduction of additional dimensions and shows just an initial tendency to
such reduction. The problem of its subsequent stage and its stability remains still open [9]. In
this manner, the number of dimensions of the early Universe can be effectively reduced dowa to
three, The law of expansion of the three-dimensional space which is conjugated to an arbitrary
n — 3-hypersurface can be estimated as V3 ~ g% ~ i with k = g(;—l—p._;) = p=2 and it
corresponds to an effective equation of state p= Hae |

When considering dimensions exceeding n = 9 the situation changes drastically. The potential
in (3.55) does not restrict the spacelike part of the configuration space and, therefore, we have no
localized, in terms of the exponents u, states. i we get ready a localized state {a wave packet}
the width of the packet spreads eventually more and more cut and, simultaneously, the center of
the wave packet runs to infinity of the configuration space. In classical theory thia signala us that
the ocecillatory mode becomes unstable and transforma into a Kasmer-like behavior. Therefore,
different mean values will depend upon the initial state crucially.

We also recall that in dimensions less or equal to nine the evolution of the metric undergoes
spontaneous atochastization which was shown to be described by an invariant measure. Using
this measure we can also evaluate the behavior of average m—volumes. Though the estimates
turn out to be the same as in (3.56) (with the replacement 5 — n — 2 and already constant D]
such estimates has more restricted sense, since the need to introduce a probability distribution is
here the reqult of an uncertainty in initial data. In quantum theory, bowever, the description is
probabilistic from the very beginning and only averages have physical sense,

In conclusion we briefly repeat the main featurea of the quantum consideration of the inho-
mogensous cosmological models.

1. It is always possible to construct a quantum inhomogeneous cosmology in a self-consistent
manner. We mean here that it is postible to construct the Hilbert space and define a probability
interpretation {despite the fact that the choice of the Hilbert apace is ambiguous).

2.Near the singularity in the absence of scalar fields one can determine stationary states of the
metric (which describe non-stationary geometries). These states are classified by filling numbers
n{z) (the density of excitations which, in the three dimensional case, correspond to the density
of frozen gravitons whose wavelengths exceed the horizon sides).

3. Close to the singularity we have no a classical background. H we try to distinguish a
classical background in the inhomogeneous models we shall find that all quantum corrections
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deverge near the singularity. Indeed, at every space point the interval can be represented in the
form

ds* = —N (y,7)dr" + 3 g% (e’ .
In a leading order we find the estimates: Q. = % + fu(y), ¢ ~ 7 , where for atationary states
we get {fo(y)} =0 . Then the expansion of this metric gives ua the expression

do® = —dt® + t} (d2)* + 8 30 (2 Int + (2L Ine)" +..) (=)

from which one can easiely see that all corrections are divergent in the imit + —» 0. Therefore, it
is not correct to use a homogeneous and isotropic model as a starting point to quantum coemology.
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Chapter 4

Third quantization and topology
fluctuations in the early universe

1. Introduction

An iz widely accepted quantum fluctuations of the metric at amall scales can change the spacetime
topology [49]. At the present Universe these fluctuations appears io be unobservable in direct
experiments, for they occur at such small scales (of the Plankian size order) which are far too
distant from those ones which are achieved in modern experiments. Nevertheless, in the very early
Universe topology-fluctuation-effects might play an important role in formation of the overall
structure of our Universe. Indeed, in the expanding Universe the acales, heing small at the very
beginning, become eventually large and acquire a cosmological significance. Therefore, in solving
problems of realistic coamological acenarios topology fluctuations should be taken into account.

The simplest processes connected with topology changes (wormholes and baby universes)
are known to be described in the framework of third quantisation {17, 36]. In particular, third
quantization seems to be the natural tool for description of quantum creation of a universe from
nothing [41, 19] which was suggested in Ref. [13]. Let us recall briefly the basic ideas of the third
quantisation.

Let T be a three-dimensional space manifold {our large *Mother® Universe) and {4} be a
set of quantum states for gravitational and matter fields specified on £ which form the Hilbert
space H of the ordinary "flat-space” quantum theory. Let us assume that a number of small
closed universes S; (*babies”} can branch off, or joint onto, £ . To describe the processes of
such a kind we have to construct a new Hilbert W = H @ Fs. Where Fg ia the Fock space for
baby universes which can be constructed as follows. Let {f;} be the set of states of a closed
homogeneons universe 5. Let us introduce & set of creation and annihilation operators {a.', a}
satisfying the commutation relations

[a.-,n}']=6.-,-.
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Then an arbitrary vector ¥ € W can be represented in the form _
T =3 C*ga) + 3. Clal [¥4) + 3 Cllatal Wa) + ...,
A Ak Asj

where |4} represents a set of vacuuma for a; 1 a; |4} = 0 for all A.

The only annoying thing here ia the fact that the theory of such a kind admits just simplest
topology changes while to describe topology fluctuations we should be able to sccount for all
possible topologies of the Universe. This can be done in the framework of a new approach
pointed out in Ref. (28] which generalises the third quantization. Such generalization is based
on the following circumstance. The fact is that the quantum topology fluctuations occur at very
small acales while in real experiments we have to use macroscopic classical devices. Therefore,
we have to describe arbitrary topologies in terms of the basic "macreacopic™ coordinate manifold
which seems to have the simplest "flat” topology. The base of topology of the basic manifold §
ia formed by a countable set {V:} of open neighborhoods V; #0 that the unification of V; gives §

s=Uu.
el
An example of such base is represented by scts of the type V. ={z € 5, |z - y| <r} where y

and r are rational numbers. Then the construction of the Hilbert space for a complite quantum
theory can be carried out as follows.

Let V; be a particular neighborhood of & point y and {g: 4} be & set of quantum states for
matter and gravitational ficld specified on ¥ . Let us define ihe set of creation and annihilation
operators a; 4 and a}, with commutation relations being

[m . G;B] = §iibap -
Using this algebra we can define vacuum state |0}
a;4[0} =0, for alli, A

and construct the Fock space F'. The vacuum state [0) describes the situation when the physical
spatial continuum is absent and, thepefore, there are no matter, no gravity, no observables. The
states of the type |04} = al, |0} describe one point y; with jts neighborhood V. and with
matter and gravitational fields given in the quantum state g1, For these states we have got the
real physical space (the neighborhood V;) and observables. The states |N; 4) = 7;,—' (a;-'I'A)N |0}
describe the situation when the physical continuum containe N identical sets ¥, given in a
quantum state g; 4. In general vectors in F will. be represented in the form

¥ = OO+ TOHL + T CHPealal0) 4

where |C°® gives the probability of the absence of the physical space, IG""‘r gives the probability
of that we have just one neighborhoad Vi, etc.. It is clear that using sufficiently small V; we
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can glue arbitrary topologies of the physical space. Besides, we obtain here the pomsibility to
solve the problem of non-renormalisability of quantum gravity. Indeed, in the framework of
the approach suggested one can construct the physical space having an arbitrary density N (x).
Thus the physical space can contain hollows at small scales, that ia, N(k) — 0 if k — oo (where
N(k) = (2x)"/ f N(z) exp(—ike)d®» ) and this can be used to regularise divergent expressions
in conventional quantum gravity.

We also point out that in qusatum gravity the topology appears as a new dynamical charac-
teristic of the physical space and, therefore, it is not fixed but is to be determined by dynamics.
In this lecture we show how one can evaluaie the effects of topology fluctuations in the evolving
Universe. Since the most promising models of the =arly Universe are given in the framework of
chaotic inflationary acenatios {45] we consider a quasi-homogeneous De Sitter model to describe
quantum topology fuctuations. We note that despite the fact that inflationary models are able to
provide, in general features, explanation of the observable picture of the Universe (homogeneity,
isotropy, flatness, etc.} it was pointed out [43] that on mufficiently large distances exceeding the
visible part of the present Universe one could expect the Universe to be essentially inhomogeneous
and anisotropic[44, 35]. We shall show that it will not be so if quantum topology Auctustions
are taken into account. More precisely, we show that during the evolution topology fluctuations
increase and if in the very beginning the Universe had a rather simple topology the spacetime
foam will almost compietely determine properties of the universe.

2. The Hamiltonian formulation

Let § be a three-dimensional space manifold, which we shall assume o be compact 85 = 0,
and gas, # (j = 1,...,m) be metric functions and a set of scalar fields specified on § . So the
Linterval takes the form

ds® = N?dt* — goa(da™ + N*dt)(d” + NAdi) (2.1)
and the action may be represented s follows [24] (we use Plankian units ml = 16x)
8 a 8
i= js (Paggt* + Paggy* + i — NC — N"Co)dadk, (2.2)
where (4=0,1,2,)

0= 2T - 5(Era+ 3+ W), | (23)

Ca = Pabag” + Pabay* + 70, W= y(%g"’&#ﬂpé" +V($)-* R} (2.4)
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where we use the so-called Kasner-like parametrization [24, 29]
Gos =Y cTlAS, x5 =Y puthL}, 2 =Uisdu®, (2.5)
a A

and P4 is expressed via the matrix Uyp € SO(3) a8 Py = — ,(%nggAUgcﬂs"fﬂyc) s (8ee,
for more details, [24}). In what follows it will be more convenient to choose a harmoenic set of the
configuration variables

=24 DI, ¢ = VEr, (256)

(here D# is a constant matrixD.-‘:.‘p‘m%j(ﬂ“—iﬁ,-‘), 0{":{;‘:2: y #=.1,2 } in which the
Hamiltonian constraint (2.3) takes the form

1
C= m(ﬂi—rﬁﬂiw). (27

where p,, ( @ = 0,...,n, where = = m + 2) stands for the momenta conjugated to the harmonic
variables z°. Now one can consider y* to be new coordinates on § and resolve the momentum
constraints (2.4) with respect to P4 . Then we obtain a reduced action which can be read off

I= /s{p.g?z‘ — Mp} — £} + 6W (2, p)]d edt, (2.8)

where ) = % = ¥ exp(22°) and the potential W appears now as a function of all dynamical
variables and momenta.

3. Generalized Kasner solution and quantization

Generalized Kasner solution is an automodel solution which realized under the condition

Wizp «<T(p),
where T' stands for the first two terraw in (2.7). This implies the potential energy of gravitational
aud scalar fields becomes negligible as compared with the kinetic energy of the fields. Then from
(2.8) we are ready to obtain the generalized Kasner solution [34]
do? = N'd* - 3" exp () £4t4dz"da?, (3.9)
where £2(z) are constant functions and the only evolving variables are the scale functions q4(s)

z-=z;+zp-£m ,
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where p° = ypy, yu = ding(—1,+1,...,+1). In the gage N = 1 one gets ¢* = ¢ + 254 In# ,
where s = (p" — D#p*)/p° is the standard Kasner exponents [34] satisfying the identity T a4 =
T(24)* + (p'/9°)* =1 with p} being orthogonal to P4 ,ie. Dipt =0,

The configuration space of the system (2.8), the so-called superspace, can be regarded as
the direct product of a continuous set of local n + 1-dimensional Pseudo-Euclidean spaces M =
Ilacs M, , where n = m 42, The kinetic term in (2.8} induces a metric cun M which is determined
by the superinterval

1
6T = L T*(z)Pe = L (et () s, (3.10)
where 52°(z) can be regarded as a small change of dynamical functions z* and A in an arbitrary
function. :

Quantization is carried out by imposing the commutation relations

[+"(=), (3] = iz, y) .

This relations have the well known representation p4(z) = —iV 4 (2), where ¥, (z) denotes the
covariant derivative constructed on the supermetric (3.10). Then the Hamiltonian constraint (2.7)
with the potential being neglacted gives the set of Wheeler-DeWitt equations (3.12)

A = ‘/_la‘_a‘,/_a.a:’a, ¥=0, z€5 , (3.11)

where G248 is the local supermetric (the metric on M, ) given by the local interval §T%(z) (3.10).
Because of the absence of the potential term the set of solutions to these equations may be
obtained in the explicit form

j;t = Aexp (:I:: js p.z'caz) (3.12)

with functions p, (z) satisfying the equation y™*p,py = 0 and A being a normalisation constant.
The momenta p, can be parametrised as p, = wn, , with an arhitrary function w (z) and vector
Ty = (lv ﬂi(“)) 1 ﬂl'ﬂ* =1.

Thus, it can be seen that we have almost complete analogy with relativistic particles. The set
of variables z* plays the role of spacetime coordinates and the label z numbers sorts of particles
[42]. Therefore, we shall follow that analogy as far as it ia possible. As is well known in the
particle physics solutions of the wave equation (in our case of the WDW equation) are divided
into two groups of positive and negative frequency. To be admissible from the physical point of
view the wave function of a particle must contain only thoee modes which are of positive frequency.
Therefore, one should try to make  similar division in the case of gravity. Setting :*(x) = const
(i.e. synhronising time variables} we rewrite (3.12) as f* ~ ¥’ where E = fywd®z may
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be called the total ADM (Arnowitt-Deser-Misner) energy [2]. Here, however, one faces the first
obstacle. Indeed, in gravity one supposes all of the configuration variables and their moments to
be differentiable functions of z . Therefore, one is unable to clamify solutions with respect to the
vign of frequencies, for w(x) is an arbitrary function which can change the sing when one iraces
it over 5. We can divide S into two submanifolds §* and $~ with respect to the sing of w(z}
and, therefore, in the general case the solutions f* (3.12) which one presumes to be of positive
frequency have the structure f+(5) = f¥(§+)f~ (§7) ,ie., they are really of positive frequency
on 5t and of negative frequency on S~. And moreover, even the sign of the total ADM energy
turns out to be indefinite. We cannot simply consider the function w to be everywhere positive,
otherwise we exclude sagential part of states. Indeed, from the classical point of view the sign of
w shows whether the local volume of 5 expands or contracts and the both cases are adminsible
on the classical level. All this means the well known fact that 2® is unable, in the general case,
to be a true time variable. This difficulty may be overcome by one of the following two methods
. Either by choosing a new time variable T in such a way that |&T| = {%:2°| and the momentum
conjugated to T is a function having a definite sing, or by adding a small mass term to the WDW
equation (3.11) (something like a cosmological constant A but having different scalar weight).
We note also that there are a number of cases of interest when z° can, nevertheless, serve as a
true time variable, for values of py turn out to be separated from zero by a slot. These are the
case of an inflating universe [45, 27] and the case of closeness to the cosmological singularity [30].
In what follows we shall consider z° to be a good appropriately chosen timelike variable, at least
for the background model. Thus, in the same manner az in particle physics we can determine
ibe positive frequency solutions to be describing physical states of the generalized Kasner model
(GKM).

The next difficulty is faced when we try to account for the potential term. Indeed, since GKM
is just 8 model, one can hope to use it as a firs step of an approximation procedure to quantum
gravity. In this manner we can consider & green function and expand amplitudes in rows by
a small parameter. Thus, in the first order we get the diagram illustrated on Fig. 3a. I the
potential {the perturbating term) is sufficiently small we do not meet here any difficulty at all.
The main difficulty appears in the second order when we regard diagrams illustrated on Fig.3b,c.
Fig.3b corresponds to the case when the scattering on the potential occurs in such & way that the
intermediate states are of positive frequency, i.e., during the process the seroth component of the
intermediate momenta 7(z) remains to be positive a4 every point = € 5. In the other words the
processes of such a type occur without the frequency mixing.

However, in the second order we get also diagrams of the type illusirated on Fig. 3c. In
the last case the scatiering is accommpanied with frequency mixing, that ia illusirated by that the
intermediate momentum p’ is directed backward with respect to the time variable (p(z) < 0).
In actually, the frequency mixing may occur not on the whole basic manifold 5 but on a part
of it K C 5 and we have to integrate over all possible submanifolds X , even those ones which
contain just & number of particular points. On the classical level this means that the variable
being chosen as a time cannot aerve as time any more. Having a particular trajectory we can
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redefine the time variable and, thereby, to improve the situation. In quantum theory, however,
if we do so we just break the situation on Fig 3a and Fig. 3b. In the other words we just draw
the trouble in another place. All this signals us that we are in principle unable to choose a good
time variable to fit all pomsible trajectories. This is, as | think, the main reason of why we have
not got a good definition of time in quantum gravity so far.

Thus, we have got in some way to interpret the negative frequency solutions (3.12). Of course,
for rather simple potential terms or in the case of a linear theory we can merely neglect the
“negative energy” solutions or even solve the problem exactly without meeting any difficulties.
But in the general case it turns out to be impossible. We note that it is not a new problem
for quantum theory, for we had met ruch situation in the particle physics. Exactly as in QFT
the frequency mixing signals us that we have a "particle production” and the problem becomes a
multiparticle one. In quantum gravity this peinta out to topology chmges (fluctuations) discussed
first by Wheeler [45] and, more recently, in connection with wormholes and baby universes in Ref.
[17). That, in patticular, clarifies us why in quantum gravity one is unable to measure field
variables with an arbitrary degree of accuracy (e.g. see [11]). Indeed, sa we are just going to
localize field functione at a particular domain of the configuration space {of the superapace) we,
thereby, create simnltaneously additional pieces of the spacetime manifold {in the other words,
we change topology) and all "one-particle” observables lose sense. The smaller volume of the
configuration space we try, the larger number of manifolds created. And in addition io the
diagrams pointed out there appear diagrams describing pure polarisation effects Fig. de. and the
creation of submonifolds {topology changes) Fig. 3f I stress again that this difficulty appears
not from the fact that the time variable is badly chosen but rather from that it is impossible to
choose the time variable to fit all possible trajectories multaneously, however the choice is made.
This is a prerogative of a device which has to be described by a trajectory of its own in the same
configuration space and has to enforce us to choose the time variable properly.

Thus, we come up to the need to consider a "multi-particle”{or complex topology) theory. In
QFT this ie achieved by second quantization of a one-particle wave function. In quantwm gravity
that is called third quantisation.

4. Third quantization

The procedure of second quantization which in used in QFT cannot straightforwardly be adopted
to third quantisation. Indeed, in particle physica trajectories of & particle are just one-dimensional
lines and the only way to reverse the trajectory backward with time is to reverse the particle as a
whole. This would correspond to third quantization in the framework of minisuperspace models
which describes crestion and annihilation processes of whole universes. On the contrary, in
quantum gravity we have to admit the possibility when just a piece of our spatial manifold is
reversed that is a small folding from the spacetime point of view. Therefore, we have to reserve
the possibility to create an arbitrary small submanifold and even a particular point in a limit.
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We start first with the last case. For the sake of simplicity we shall use a lattice approximation
of the coordinate manifold § . So the coordinatea + will take discrete values with an interval
Az which afterward we have to tend to zero. Then the minimal sise of the apatial mapifold to
be created is evidently AV = (Az)®. Further, we shall call such a manifold as an elementary
cell of our space. The configuration space of the cell is n + 1-dimensional manifold M, which
has been introduced in the previous section . Quantum statey of the cell may be described by &
local wave function ¥, (z) which has an sdditional label = pointing out the point of § st which
the cell is placed. This function has to obey one of the local WDW equations (3.11). In the case
under consideration in virtue of the absence of a potential term the local WDW equation is the
ordinary finite-dimensional wave equation on M, for & massiess field.

Let us now assume that the number of such cells may be a varisble. This means that at a
particular supporting point of the coordinate manifold 2 € § there in a number of elementary
cells corvesponding to the physical space. In quantum theory this fact is accounted by third
quantigation of the local wave function ¥, introduced above. The last one becomes field operators
and can be expanded in the form (for simplicity we consider ¥, to be a real scalar function)

¥, = 3 C(p,z)f(p,2) + C*(p, 2)f*(P,2), (4.13)
r

where f(p,2) = (Zwp(2x)*) ke r""+%* (here w, = |p| and we put AV = 1) is the set of positive
frequency solutions to the local WDW equation and the operstors C(p,z) and C*(p, z) satisfy
the standard commutation relations

lC'(p, ”)l C+{p', y)] = sp.p’ 6(33 l‘)' (4.14)

The field operators ¥, act on a Hilbert space of states which has well known structure in Fock
representation. The vacuum state is defined by the relations C{z,p) | 0 >= 0 (for all = € 5},
<00 >=1.

Acting by the creation operators C+(p, #) on the vacuum atate we can construct states describ-
ing a universe of an arbitrary spatial topology. In particular, the states describing the ordinary
universe have the struciure

If >= b;)l Frallswy >, |Lygey >= ';-—1 l'!'(»'*(z,p(z))lﬂ > : (4.15)

where Z is a normalization constant and the wave function describing a simple universe takes
the form

<QE|f >=< 0[] ¥.\f >= T Fuafow {4.16)
ves ()]
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where fory = [Naes f(p{z), 2) coincide with the positive frequency solutions {3.12). The states
describing a universe with n disconnected spatial components have the following structure

[n >=[1p s ooy Lyngu) >= 5~ H I_LC"’(z,p,{z))lﬁ -3 {4.17)
i—1I€

(we remind that in the model under consideration due to the existence of Ly, the coordinates 2
take discrete values). Besides these states describing simplest topologies the considered approach
allows to construct nontrivial topologies as well. This is due to the fact that the tensor product
in {4.15), (4.17) may be defined either over the whole coordinate manifold § or over a part of it
K C 5. In this manner, taking sufficiently small pieces K; of the coordinate manifold § we can
glue arbitrarily complex physical spaces. In order to construct the states of such a kind it turns
out to be convenient to introduce the following set of operators

oK, p(K)) = ]I Ole,¥=)),  o*(K,p(K)) = ]] C*(z,p(=))- (4.18)
X =K

These operators have the clear interpretation, e.g. the operator a*(K,p(K)} creates the whole
region K € § having the quantum numbers p{X). Thus, in the general case states of the universe
will be described by vectors of the type

|& >= o0 > +zcm, 0> 43 errafaio > +... (4.19)
13

5. Interpretation and observables

Now consider the interpretation of the suggested approach. Ordinary measurements are usually
performed only on & part K of the coordinate manifold §. There are two possibilities. The
first one is when an observer measures all of the quantum state of the region K and the second
more probable one in when the observer measures only a part of the state. In the second case
the observer considers K as if it were a part of the ordinary flat space. Therefore, the part of
the quantum state which will be measured, appears to be in a mixed state. This means the loss
of quantum coherence widely discussed in Refs.[17]. In order to describe measurements of the
second type we define the following density matrix for the region K

FK) = 7 < |t (K, n(K)a(K,m{K))I® >, (5.20)

N (K )
where | > in an arbitrary state vector of the (4.19) type and N(K) is a normaligation function
which measures the difference of the real spatial topology from that of the coordinate manifold
S. H we consider the smallest region K which contains only one point # of the space § the
normalisation function N(z) in {5.20) will play the role of a *density” of the physical space. For
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the states (4.15), (4.17) we have N(z) = | and N(z} = n respectively. Thus, if A(K) is any
observable we find < 4 >= 3 Tr{Ap).

To deacribe complete measurementa (of the first type) let us consider creation operators for
localised states of the metric field. These aperators is constructed in analogy with the well kunown
Newton-Wigner operators [42] (see, also, [15])

w* (3,3) = Ty () bl (2,p) ,
#* (K,0(K)) = Lyy ¥y 2 (K)) 8 (K, p (X)) ,

where y, = (2x)~Fe®r-iens ppd Yum [O(K)] = .E[be;(,) {0 (z)) and the operators 5% (K, p{K))
is defined in the same manner as in Eq. (4.18). Thus, the state jz,z) = ¢* (z,2) 10,4} deacribes
2 unique point of the physical space with configuration variables locslised at the point O = (2° ,
£") of a superspacelike hypersurface I] C M, while |K, z{K)} = ¢*{K,0(K)) |05} describes
a whole region K C 5 with field variables O(X) .

Thus, the probability to find a unique point z with gravitational and scalar field variables
being at the point & of the superspacelike hyperaurface 7.2 may be deiermined as

dW, = P.(z)dZ3 , (8.21)
where P, (z) is the one point probability density
Pe(0) = (2,518}, {5.22)

with |&} being an arbitrary initial state (4.19). In the case of the whole region X the expression
(5.21) in generalised in a usual manner

dWx = Px(z (K))DE% , (5.23)

whete DB} = [I,ex 452 is the volume element on the hypersurface Y € My 2 (z) = 2°,
and Py =|< K,2(K) |& >° .

6. Topology fluctuations and quantum creation of a quasi-homogeneous
inflationary Universe

Let us conuider an automodel solution describing an infalationary Universe. The inflationary
stage in the evolution of the Universe begins under the following conditions

W 2z 2A = const, (6.24)



401

which imply the potential becomes an effective cosmological conatant [45, 43]. The conditions
(6.24) imply also defined restrictions on the degree of inhomogeneity of the Universe. In this case
the Wheeler-DeWitt equation can be read off (¢ = ¢™°)

(B +12A" N w =0, zeS. (6.25)

where A, denotes the same Laplace operator as in (3.11). The distinctive feature of this equation
is the fact that it has an explicit "time”-dependent form. Therefore, one could expect the exdis-
tence of quantum polarisation effects (topology fluctuation or the so-called spacetime foam [49]).
These effects can be calculated either by singling out the asymptotic in and oui regions on the
configuration space M for which we can determine positive-frequency solutions to Eq.(6.25) (ses
for example [23]), or by using the diagonalisation of the Hamiltonian technique [15} by means of
calculating depending on time Bogoliubov's coefficients.

Let us coneider solutions to an arbitrary local r-equation (6.25). These solutions can be
represented in the form u(p, ) = (2x)~ %%, (z°) where ¢ satisfies the equation

ﬁ—? +ul(sYep =0, uP=p?+6A> (6:26)

and is expressed in terms of Bessel or Hankel functions. The function y can be decomposed in
positive and negative frequency parts
= 7::("”" + B,
, (6.21)
= ifFlape™ — Be ™),

where 8, = [** w,ds® . The functions a, and 8, satisfy identity Ja,* — |8, = 1 and define the
depending on time Bogoliubav coefficients [15]. The depending on time creation and anmihilation
operators take the form

be (2,p) = 0y (°)C (=, P} + B (:°) C* (2,7} ,

: (6.28)
55 (2.8) = (s") C* (z,P) + B, (2"} O (2.7) .

In terms of these operators the super-Hamiltonian of the field ¥, (the Hamiltonian density)
becomes diagonal

E = jeulﬁ}f = %Z’:wp (x“) (b; (2.p) b (2,2) + ¥ (=, p) b (:,p)) . {6.29)
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where B45 = VA.Vp¥, — 3Gz (VoR.VEY, — (U + {P)¥2) and dTf = d"z. The ground
state of the Hamiltonian is determined by the conditions b, (z, p)|0s} = 0 for all z and p and
in also depending on time. The excitations of (6.29) are interpreted aa points of physical space
having the coordinate s € 5 .

Now we determine two asymptotic regions as in (2 — —co0) and eut (z° — +00). In these
regions the functions &, and 8, take constant values and therefore, in these regions we can define
positive frequency modes as U{p,z} = (2u,(21')")‘§e""""". Subatituting the initial conditions
ap =1, 8, =0 as z° - —oo in (6.26), (6.27) we find that in the out region the Bogoliubov
coefficients are

oy = (exp DM N, B = (expl- SR 25MTENE. (6.30)

Then, for example, if the initial state of the "superspace”-Hamiltonian ia the ground state |0 >
it the out region the density matrix (5.20) takes form

oK) = TT #a), (8.31)

[ 15 4

where p{2) is a one-point density matrix

P"(z} - Irﬂptz (P, q) N(t) 8"’ 6{?! q) (6'32)

N(z ( )
The normalisation function in (6.32) is given by N(2z) = Vic., where ¥, is the spatial volume
of the configuration space M, and ¢, ia & constant ¢y = Eﬁﬁ(% here £{s) = 52, k™" is the

Riemann ¢ function. Inthe case n =2 or n =3 we find ¢; = 155 and 3 = 39 respectively.
The matrix (6.31) doez not depend on spatial coordinates and has the Plankian form with the
temperature 7 = -1 and therefore, we obtain the creation of a universe which in average turns
out to be homogeneous.

To conclude this section we note that the property of the created universe to be homogeneous
follows in the first place from the apecific choice of the homogeneous initial quantum state [0 >.
Nevertheleas, the considered model shows that during the evolution topology fluctuations strongly
increase. Indeed, in the out region the *space deneity® M(z) turns out to be proportional to the
spatial volume V. of the configuration manifold M, . In the given mode] the volume V; is infinite
and that of the "space density” but it would not be so if we consider the real potential in (6.25)
{or consider next orders of an approximation procedure) and, therefore, one could expect the
value N(z) to be sufficiently large but finite. Then if the initial state corresponds to a simple
universe (4.15) having Niu(z) = 1 the final state will be described by the density matrix (6.31)
up to the order of 1/V.
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7. On a Modification of the Ordinary Field Theory

As was shown above the numbers N(z} vary during the evolution. This means that the foamy
structure of the physical space is not fixed and is determined dynamically. In this section we shall
discuss sn interesting poesibility when the spatial continuum has "hollows™ at small distances
(i.e. N(k)— 0 if k — oo, where N(k) = (2x)~%/* [ N(z) exp(—ikz)dPz) which may be used to
overcome the divergences problem in conventional quantum gravity. As an example, we consider
now a free massless scalar field .

In terms of Fourier expansion for ¢
olont) = (2r) P [ T2 LA 1 A%(1)e S} (1.33)

{here k = |k|), the field Hamiltonian takes the form of a sum of independent non-interacting
ocecillators

- % [ #[400)4* @) + A (R)A(K)] £k (7.34)
Since the density of the physical space N(k) is 2 variable quantity so does the number of field
oscillators. Thie fact may be accounted for in a phenomenological manner by introducing cre-
ation and annihilation operators of the field oacillators which obey the same (anti) commutation
relations as in (4.14):

[C(k, n), CHK ,m)]s = £ &k — k) (7.35)
where dependence of the operators on the quantities k and n is connected with the classification of
the states an individual oscillator {the apectrurn of the oscillator has the form e(k,n) = kn+e(k),
where the quantity eo{k) gives the contribution of vacuum fluctuations of the field). In the vacuum

state [0} (which is determined now by C(k, n) | ¢ >= 0) field oscillators (and all field observables)
are absent. The operator of total energy of the field can be generalized in & natural way as

E =Y e(k,n)C*(k,n)C(k,n). (7.36)

The connection with the standard field variables can be determined with the help of operators
which increase (decrease) the eneargy of system on k ([E, A (k)]_ = £kAHI(L))

A4(0) = (n+ 110+l + 1C ke, (r.a1)

AK) = 3(n+ )40+ (e, n)C(k, m + 1), (1.38)
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It can be seen from (7.36)-(7.38) that the operators A and At eatisfy the commutation rela-

tions
[A(K), A*(K)}- = N(Kk)6"(k - &), {7.39)

where N{k} = o, C*(k,n)C(k,n} is the complete number of apatial dornains related to the
wave number k. If one restricis oneself by the states [of the type (4.15)] with N(k) = 1,
the operators A*(k) and A(k) certainly coincide with the standard creation and annihilation
operators of acalar particles.

As was shown the quantities N{k,n) = C*(k,n)C(k,n) must be determined by dynamics.
However, they can be estimated from simple considerations. It is clear that in the absence of the
gravitational interaction the quantities N(k,n) vemain constant. Then, for instance, under the
assumption of bounded density N < oo of cecillators satisfying the Fermi statistics it in cany to
find that the occupation numbers corresponding to the ground state are

N(ks “) = a(p - C(k, “))! {7-40)

where 8(z) =[ 0 for z < 0 and 1 for z > 0], and s is determined via the total number of
ocacillators N = ¥ N(k,n). Using (7.40), one can found the number of oscillators corresponding
to n wave vector k as

(k) =_>:s(»—e(k.nn = [+ (1 — (X)), (141)

here [z] denotea the entire part of z. In particular, one can see from (7.41) that N(k) = 0 for
i < efk).

For the excited atates formed by the action of the operators A+(k) on the ground state {7.49),
the operator N(k) ia the usual function (7.41). Let us consider excitations of the field (scalar
particles) described by the thermal equilibrium state corresponding to temperature T' (one could
expect that the spatial domains created near the singularity have a thermal spectrum [23]) Then
the correlation function for the potentials of the field (7.33} takes form

nnkrdk

< pla)o(z + 1) >= () [ @)

where $%E) = k’N(k)%ooth(;’F). In the wave number range & < (T, 4) the spectrum of the-
field fluctuations is scale-independent: $(k) = TeN(k) = Tu.

We also note that the ground state determined by the occupation numbers {7.40) has a
bounded energy density of the field which can be considered as a "dark matter”. In addition,
we note that the above property of spectrum to be scale-invariant at large scales for the thermal
equilibrium state, actually, does not depend on the statistics of the cacillators (i.e., npon the sign
+ in (7.35), (4.14)).
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