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1. Introduction

The singularity theorems [1] show that, under reasonable physical assumptions, the universe has
developed an initial singularity, which is called the big bang, and will develop future singularities in
the form of black holes and, perhaps, of a big crunch. Until now, singularities are out of the scope
of any physical theory. If we take the pretentious attitude that & physical theory can describe the
whole universe at every instant, even at its moment of creation if it has had one, (which is the best
attitude because it is the only way to seek the Limits of physical science), we must assume that the
‘reasonable physical assumptions' of the theorems are not valid under sxtreme situations of very
high energy density and curvature, which is very plausible. We may say that general relativity
or any other matter field theory must be changed under these extreme conditions. Omne good
point of view (which is not the only one) is to think that quantum gravitational effects become
important. We should then construct a quantumn theory of gravitation and apply it to cosmology.
It is a good peint of view because, besides the possibility of obtaning from quantum gravity a
solution to the singularity problem, we gain from quantum theory the possibility of constructing
a theory of initial conditions for the universe. This theory could then explain why the universe
is remarkably homogeneous and isotropic and even why the constants of nature have the values
we observe they have. Moreover, it could give the spectrum of quantum fluctuations of geometry
and matter of primordial origin and provide us with & complete theory of galaxy formation.

We call quantum cosmology [2, 3, 4] as this attempt to apply quantum gravity ideas to
the universe as & whole. As we have seen, the goals of quantum cosmology are rather ambitious.
However, its problems are pairwise with its ambition. This is because it tries to put together three
of the major and revolutionary achievements of physical science in the twentieth century. One,
general relativity, which describes gravitation, has sholished the concept of absolute spacetime
by treating its metric as a.dynamical variable in interaction with matter and with itself. Other,
quantum mechanica, which is the correct deacription of matter at atomic scales or below, has put
serious objections to the existence of a very natural and basic concept: objective reality. Finally,
cosmology, is a theory of a single system, the universe as a whole, including us, observers, &
situation which is very unfamiliar $o natural science. That is why 8o much time was needed for
scientistz to insert cosmology in the domain of natural science. Hence, needless to say how hard
it is to put these three theories together.

The mont exciting feature of this union is that all the difficulties of particular theories that
once were forgotten because they were not important for all pratical purposes, become crucial
in quantum cosmology. Let us begin with the marriage of quantum mechanics with general
relativity (or some gravity theory which contains it). No quantum gravity theory was proved to
be renormalizable. One good candidate ia string theory, which has also the ambition of being
a theory of everything. However, even if one of such theories ie proven to be renormalizable, it
must alzo be shown that the perturbation series of the theory does not diverge when summed
over. In other quantum field theoriea, like in quantum electrodynamics, it is argned that such
divergence involves very high energies that cannot be probed now and at Planckian scales some
more fundamental theory must be used. This reasoning cannot be applied to quantum gravity;
after all, quantum gravity is the theory to be applied at Planckian scales. Nenperturbative
quantum gravity has also & lot of unresolved problems (complicate constraint equations, lack of
unitary evolution, etc).

The application of quantum gravity to cosmology adds new problems. How can we apply the
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standard Copenhaguen interpretation to a single system? What happens with its probabilistic
interpretation? Who are the observers of the whole universe? Where in a quantum universe can
we find a classical domain where we could construct our classical apparatus, and test the theory?
This is not a problem of quantum gravity alone because there is o problem with the concept of an
ensemble of black holes and a classical domain outside it. Finally, in quantum mechanics, time, in
apite of seeming to be a measurable physical quantity, is not treated as an observable (hermitean
operator) but as an external evolution parameter {c-oumber). In the quantum cosmology of a
closed universe, there is no place for an external parameter. So, what happens with time; does
it become an operator? These are some of the difficult issucs which the subject of quantum
cosmology has to give an answer in order to have a meaning.

In these lectures we will try to explain some ideas on how can quantum cosmology achieve its
ambitious goals and what are the attemps to anawer some of the profound and difficult issues it
has raized.

In the following section we will set the problem of the initial cosmological singularity and mo-
tivate the study of quantum cosmology. After, we will show that the Copenhaguen interpretation
of quantum mechanics cannot be used in quantum cosmology and we will present some of the
alternative interpretations that can be consistent with a theory of the whole universe.

In the third section the canonical quantisation of general relativity will be developed and the
Wheeler-DeWitt equation obtained. The issue of time will be discussed and we will advocate the
idea that time has no meaning at Planckian scales. It can be recovered only at the semi-classical
limit.

In the fourh section we will begin to present quantum cosmology as a theory of initial condi-
tions of the universs by using a modified version of the many-worldss interpretation of quantum
mechanics. The idea is to find peaks of the serni-classical Wigner function in order to find the
most probable coamological classical solution. After introducing the notion of minisuperspace, we
will present a particular example where this idea can be applied. Unfortunately, it will be shown
that this program can not be implemented in general. Also, from the study of the minisuperapace
model introduced in this section, it will be evident the need of having boundary conditions to the
Wheeler-DeWitt equation, which yields the motivation for the next section,

In section 5, the no-boundary boundary condition to the Wheeler-DeWitt equation will be
presented. It will be applied to the example of the precesding section and to other models. Here,
quantum cosmology as a theory of initial conditions exhibits all its potentiality. In particular, we
will indicate how the conditions of having inflation might be obtained, and how the specirum of
quantum mechanical periurbations responaible for galaxy formation might be attained. Of course
theee are not closed answers and we will show their problems. After, we will present the notion
of decohersnce and show how it can be useful in quantum cosmology. In particular, it may save
the program of finding the most probable classical solution from the Wigner function and explain
how a classical universe can emerge from a quantum cne.

In section 6, we will introduce some other alternative interpretations of quanturn mechanics:
the formulation of quantum mechanics in terms of histories elaborated by Griffiths, Omnés, Hartle
and Gell-Mann, and the ontological interpretation of Bohm-de Broglie-Healey, and their relevance

to quantum cosmology.

Finally, in the last section, we will conclude with a summary of the stimulating results of
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quantum cosmology, the many problems that are still unresclved, and a personnal point of view

about the good directions that should be followed.

Conventions and notation

a) metric signature: (—,+,+,+)
b) greek indices vary from 0 to 3 and latin indices from 1 to 3
¢) four-dimensional covariant derivative of a four-vector 4%:

VaA® = 8.4 + T2 A
whete
1
I‘:, = Eﬂﬁ“(av&m + 8«9»» - 8&9‘”)

mda..E%

d) three-dimensional covariant derivative of a three-vector 47:

DA = B A T AN
where
T = W (Bhu + Buha — Biha)

where h;; is a 3-dimensional metric and A¥ its inverse.
e) four-dimensional curvature:

R"MA" = VaVad¥ — VeV, A"
f) four-dimensional Ricci-tensor:
Bp=Rop

g) Einatein’s equations:

1
GPERP_ER’P=M0U

(g

. (12)

()

e

)

(1.8)

(.7
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h) three-dimensional curvature:
SR A’ = DuDA' — DiDL A (1.8)

The definition of the three-dimensional Ricei tensor is analogous to the four-dimensional case.
Repeated indices are summed.

i) symmetrisation:
Appy = %{Ai:' + A5) - {19)

j) anti-symmetrization:

A = (A~ A%) (1.10)
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2. The incompatibility of quantum cosmology with the Copenh-
aguen interpretation of quantum mechanics

In thia section we will set the motivations to study quantum cosmology and show ihe incompat-
ibility of the Copenhaguen interpretation of quantum mechanics with a quantum theory of the
universe.

2.1) The motivation for studying quantum cosmology

First, we will present the arguments indicating why a classical modet for the universe which
maintains at any scale the present laws of physics has probably an initial singularity. For details
on this subject, see the book of Ellis and Hawking where it talks about the singularity theorema
.

Take a timelike four-vector field V* with V*V, = —1, which may describe the histories of
amall test particles moving with this velocity or the flow lines of a fluid. We can divide the
covariant derivative of this four-velocity field into its irreducible parts:

VaVa = ;’w + Oas + Wag + Vadp (2.11)
where

=V (2.12)

Out = BB VAV, - %a.., (2.13)

Wap = KRS VAV, (2.14)

A=V V=V (2.15)

and k., = g, + V.V, is the projector onto the surface perpendicular to V* at each spacetime
point.

These quantities can be interpreted in the following way [5]: the quantity # is the rate of
change of the volume of the fluid represented by the field V*, the quantity o, is the change in
form of a constant volume element of the fluid (called the shear tensor), wog is the fluid’s rotation,
keeping itz form and volume constants {called the vorticity tensor), and A® is its acceleration.

Taking the definition of curvature,

RigV* = VoVaV* — VgV, V* (2.16)
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summing ih 4 and o, contracting with V4, and wing equation (2.11) we cbtain, after some
manipulation,

j = —%o’ —20% + 20 — R V*V" 4 VA" (217
where

207 = 0.0 (2.18)

2 = wopu™® (2.19)

Equation (2.17) is called the Raychaudhuri equation. It gives the acceleration of the volume
of the fluid. We will assume, for simplicity, that the acceleration of the fluid is zero (a geodesic
fiuid). For more details on this point we refer again to [1]. The rotation of the fluid gives a positive
contribution to the acceleration, in analogy with centrifugal force. However, rotation is linked
with elosed timelike curves, which viclates causality. Therefore, we will set w? = ¢. The first and
second term of the right-hand-side (RHS) of equation (2.17) give a negative contribution to the
volume acceleration. The third term is, using Einstein’s equations given in the introduction,

R VH*V™ = 8x(TWV VY — ;3 (2.20)

which is positive for usual physical fluids. For instance, for a perfect fluid, the RHS of the above
equation is 4x(p+3p) where p and p are the enrgy density and pressure of the fluid, respectively.
When the RHS of the above equation is positive or null it is said that the fluid satisfies the sirong
energy condition [1).

Consequently, assuming the hypothesis of the nonexistence of closed timelike curves®, sup-
posing that Einstein’s equations are valid everywhere and that the cosmologicat fluid satisfies the
physically reasonable strong energy condition, equation (2.17) yields:

d= _%m — 26 — B, VAV <0 (2.21)

As the volume acceleration is allways negative (an expreassion of the attractive nature of
gravity), and knowing that the universe is now expanding, we conclude that the congruence of
the timelike curves representing the cosmological fluid has shrinked to zero volume at some finite
time in the past. This is the initial cosmological singularity?.

In order to avoid this patology we may suppose that, under these extreme situations, general

relativity (in a strict sense) is not valid or that the strong energy condition is violated. Some
attemps in these directions are theories with non-minimal coupling [9], Weyl geometries [10],

¥ Hecently, & lot of research bas been done to investigaie if thiv hypothesis can be proven. The cronology
protection conjecture advocates that the lawn of phywics prevents the existence of closed timelike curves [8, 7].
" 3 X gero volume congroence of curves does not necessarily implies & divergence in the curvature or in the cnergy
density. See refi [B] for & di jon of this point
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change of signature [11], existence of 8 negative energy scalar field [12] or viscosity effects [13],
among others [14].

We will adopt here the position that near strong gravitational fields quantum effects of grav-
itation become important. We do that for two reasons. First because this is a natural thing to
do. Historically, theories that developped singularities were cured by quantum mechanichs (like
electrodynamics). Also, a world of quantized fields (quantum electro-weak dynamics and quan-
tum chromodynamics) in interaction with an hypothetical fundamental classical gravitational
field is inconsistent [8, 15]. Furthermore, the fundamental constants G (Newton's constant), &
(Planck’s constant) and c (speed of light) yield the fundarmental scalea where some quantum
theory of gravity might be relevant: the Planck scalc. They are:

Ly = ‘! ﬁc‘g ~ 107%em
T = 1’% ~ 107%s
My = J% ~10~%

e s
which are, respectively, the Planck length, the Planck time, the Planck mass and the Planck
density.

The aecond reason for adopting this position is that a theory of quanium gravity when applied
to coemology may also be a theory of initial conditions for the universe. But why is important
to have a theory of initial conditions for the universe? This is because the universe we live in is
remarkably homogeneous and isotropic, with very small deviations from this highly symmetric
state, which are enhanced, in the course of time, by the gravitational interaction (see in this
volume the companion article of R. Brandenberger). Clearly, solutions of Einstein’s equations
with this symmetry are of measure zero; so, why is not the universe inhomogeneous and/or
anisotropic? The reader may object by saying that someone who lived in an asymmetric universe
could also ask why the universe has this specific kind of inhomogeneity and not ancther. However,
this is & quite different situation. Let us make the following analogy. Suppoee there is & couple
with 5 children, all born in different years. They can try to calculate the probability of having
these specific children out of the totality of genetic possibilities. They will be amazed with the
very amall result but will correctly reason that this would be the case for every other ensemble
of children. Suppose now that these 5 children, without being bom in the same gestation {they
are not twins), are genetic equal. Five children, born in different gestations, but all genetically
identical and, consequently, apart of age, physically identical. The probability for this to happen
is as amall as any other specific configuration of children. However, the parents will be certainly
amased with such an odd thing and will correctly try to find a doctor that could explain them
why such a bisarre occurrence has happened. In other words, they will naturally suppose, and
the doctor too, that there is some deep reason that could explain this phenomenon, some kind
of strange behaviour of their reproductive system. The situation is the same in cosmology, and
quantum cosmology may be the theory that could explain us the remarkable coincidence that the
universe looks like the same in every direction and from every point.

Inflation [16, 17] is an idea that try to explain this coincidence. However, in order for inflation
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o happen, some special initial conditions are still necessary. As Penrcee has pointed out, if we
take any inhomogeneous cosmological solution of Einstein's equation and turn it back in time, we
will arrive at some initial configuration which is certainly oot an initial condition for inflation.
Alzo, the universe may recolapse before inflation takes place. Hence, inflation ameliorate but does
not solve the problem. An approach followed by zome researchers is to apply quantum cosmology
arguments in order to obtain the initial conditions for having inflation.

These are the motivations for studying quantum cosmology, which is the application of quan-
tum gravity to ecemology. However, apart from the problems of quantum gravity itself, which
will be discussed in the next section, there is the problem of applying quanturn mechanical ideas
to a single system as is the universe. In particular, we will now show that the Copenhagnen
interpretation is not appropriate to quantum cosmology. Let us then make a brief review of this
interpretation in the context of non-relativistic quantum mechanics.

2.2) The problem with the Copenhaguen interpretation

The postulates of quantum mechanics are®:
1) Every state of the aystem is fixed by a ket | ¥(t,)> which belongs to a Hilbert space.

2) Every measurable physical quaatity is deseribed by an hermitean operator (called an ob-
servable) acting in the Hilbert apace of the system.

3) The ouly possible results of a measurement of a physical quantity are one of the eigenvalues
of the observable associated with it.

4) The probability of finding one of these eigenvalues (say, oy} is given by:
plon) =| Pu | 8> [ =< ¥|Pa|¥ > (2.23)

where P, is the projector onto the eigensubapace of the Hilbert space with eigenvalue a,,.

5) After a measurement giving the eigenvalue a,, the state of the system collapses to a new
state given by:

P | %>

l o= m (2-24)

6) The evolution of the state of the system is governed by the Schrédinger equation:
ad 20> _ piyeg)> (2.25)

where H{t) is the hamiltonien operator of the system.

2The postulates involving spin and identical particles will not be presented. They are not essential for what
follows
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In order to describe statistical mixtures of quantum states, we need another mathematical
entity, the density matrix ¥, A pure state can alsc be entirely described by the density matrix
# = [#><¥|. All equations of the postulates can be written solely in terms of p. For instance,
the Schrodinger equation can be written as

a2 - i), o) oW
and the probability given in equation (2.23) is, in terms of p:

plas) = Te( P p) (2.27)

where Tr means the trace of an operator.
A mixture state can be described by the following density matrix:

p=2, p¥i><¥ (2.28)

=1

where p; is the probability of finding the state |¥;> in the statistical ensemble of states described
by the density matrix of equation (2.27): $°2; p = 1. It is & classical statistical distribution of
states |¥;> because there is no correlation (represented by off-diagonal terms) among them. In
fact, if we want to calculate the probability of finding the eigenvalue an of an observable A we
have, using equations (2.23) and (2.2T):

P(on) = T(oPa) = 3 35 < WilPAIE:> (2.29)

which is the sum of the probability of finding the sigenvalue a, in each state |#;> multiplied by
the probability p; of finding this state in the statitistical ensemble. The reader can casily verify
that, if the density matrix p has had off-diagonal terma, the probability p{a,) given sbove would
have been modified with the adition of extra terms representing the quantum interference among
the states present in the off-diasgonal terms. Hence, a classical statistical mixture of quantum
states is necessarily represented by a diagonal density matrix in these states.

Returning to the postulates of quantum mechanics, we would like to make two important
remarks. First, we sce that time, in spite of being a physical measurable quantity, is not an
hermitean operator but a c-number. It is the sole exception of postulate 2. We will discuss this
insue in the mext section. Second, it seems that there are two laws of evolution for the state
vector [¥ >. One is the Schrodinger equation {2.25) and the other is the collapse represented by
equation (2.24) which happens when a measurement takes place. This is certainly an odd thing
because any measuring apparatus is constituted of atoms and we should expect that its evolution
and interaction with the system to be measured should also be described by the Schrodinger
equation. Hence, a natural question to nek is: can the Schridinger equation explain the collapse

4 A statistical mixture of quantum states | ¥, > and | ¥;> with weights | A:)® and | A3{* cannot be described
by the state | #>= Ay | #3> +X3 | #3> due to quanium interference.
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of the state vector? To answer this question, we will now describe a simple model of what should
be a measurement, trying to keep all its essential features. For details, see (18, 19].

Let § be the observable that will be measured in a quantum system and [s> its eigenstates:
5'|s »>= s|s >. Let x> be the eigenstate of the position operator of some pointer of the
apparatus: X|z »= z|z >. The interaction between the systern and apparatus takes place in a
finite time interval and during this interval it is much greater then other interactions. Qut of
this interval, the measured system is isolated from the apparatus, and we can write the state
of the two systemns as a tensor product of states belonging to their respective Hilbert spaces:
[@ >= |ps > @ |wa > The interaction {measurement) will introduce a correlation between this
states. If the initial state of the system is an sigenvector of §, the measurement will not change
it but it must change the state of the apparatus by something proportional to ita eigenvalue in
order to register this value. Thus, the interaction evolution operator must change the state before
the measurement to a state after the measurement in the following way:

Uha» ®jz>=|s> @[z + ha> . (2.30)

where I; is the interaction evelution operator, and ) is some large coupling constant which
realises the amplification that took place in the apparatus 5.

If we now take as initial state the state vector

C[Wo>=lps> Blpa> (2.31)

with (we are supposing that the eigenvalues s and z are discrete and continuous, respectively):

Tps>= Z.:c.lw (2.32)
md
lpa>= [ f(z))=> de (2.39)
we obtain for the final state:
[#r>=3als> @leats)> (2.34)

| where |@a(8)>= [ f(z) |z + As> dz = [ f(z — Xs)|z> dz.

_ Supposing that f(z)} is a gaussian centered at z = 0 with error Az (which means that the
. pointer of the apparatus is at the position = = 0 with error Az) and assuming that the difference

| 'A.mplintionofthilintuuthnmbeobhineﬂbyhkinguinmmiqnhamﬂtonimtheopﬂm.ﬂ';:
- wg{t)S @ B where P ia the oheervable canonically conjugate to the position X of the pointer: [X, P] = ik. If we
~ work in the interaction picture, supposing that ¢(t) is nonsero only at —¢ <t <.¢ and dominates all other effects

| a# this interval, then we can arrive at equation (2.30) with X = T2 gli)dt.
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in any pair of eigenvalues s of the operator § is much greater than Az, Aa>> Az, (in order for
the pointer give a readable result for the measurement) then we can show that:

<pa(s)lpa{s') >=b.n (2.35)

Therefore, squation (2.34) means that the final state of the measured system plus apparatus is
an orthogonal superposition of states, each containing an eigenvector of § with eigenvalue 2 and
a state of the apparatus where the pointer is centered st z = As (not anymore at z = 0 as the
initial state).

To be more realistic, let us take into account other degrees of freedom of the apparatus,
which is certainly a macroscopic object with many degrees of freedom, and its environment. The
transition from the initial to the final state can now be written as:

9:>= (F als>)® loalr)>— [#r>= Y wl s> Slea(ar’)> (236)

'

and |pa(r) >= [ f(2)|z> @\r > dz, |pa(s,r}>= [ f(z — As)le > @|r > dz. The variable r
represents the extra degrees of freedom and < &', |z, r>= §(z — =')§, .+ (for simplicity, we have
sssumed that the set {r} is discrete). The coefficienta w]_, are included in order to be as general
as possible. As the time evolution coming from the Schridinger equation preserves the norm than
% w7 = 1 which means that the quantum probability to obtain the eigenvalue ¢ continues
to be Toe feuluz, o = el

What should be the density matrix of the observed system plus the measuring apparatus after
a real mensurement has been performed? We must expect that the final distribution of data
should be described by ordinary probability calculus. If it is a real measurement, the different
data muat be clearly separated events. Therefore, in our example, we must expect that the final
density matrix should describe a classical statistical ensemble of states. It should be the tensor
product of eigenstates |s> of the measured observable & with states of the apparatus describing
the position of the pointer dislocated from the initial position by something proportional to the
corresponding eigenvalue s, each one of thess states appearing in the statistical mixture with
probability |e,|*.

To check if thia is true, let us now calculate the density matrix of the final state given in
equation (2.36). As the relevant degree of freedom for the measurement is the position of the
pointer, we will calculate the reduced density matrix, which ia obtained from the total one by
tracing out the irrelevant degrees of freedom ¥: pre = T <r|p|r>. Everything relative solely to
the position of the pointer and to the observed system iteelf can be calculated with this reduced
density matrix [20]. For the final state |¥p > this matrix is:

praa = 2 ledlPla><al® [pals)><pals) +

+ L adwlulile><s|® lwala)><pals)l (2:37)
ra ekt

The first term in the sum (2.37) is what we were expecting for a density matrix describing »
real measvrement. The second term, however, an we have discussed before, describes quantum
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interference in the data distribution, which is unacceptable for a real measurement. The appa-
ratus, even being a macroscopic system, would be subjected to guantum interference armong ita
macroscopic states, a situation that has never been observed: no one has ever seen the pointer of
an apparatus in a superposition of quantum states like the image in a photograph of superimposed
pictures.

The situation does not change if we add a second apparatus that measures the first one and
the system [18]. How can we explain this conflict between theoretical description and what ia
really observed?

The first way out is the Copenhaguen interpretation. It sayz that what ia wrong in the the-
oretical model is the assumption that the macroscopic apparatus can be described by quantum
mechanics: it must be described by classical physics. Therefore, it postulates a fundamental
divison between the quantum world and the classical world, and it is in the last one where obser-
vations, experiments, and the consequent knowledge about a quantum system can be acquired.
Hence, a quantum system does not have any meaning without a classical world. However, many
other questions can be raised: When a aystem can be considered as macroscopic? What happens
in the transition from quantum to classical? What kind of theory is quantum mechanics that
has another theory, classical mechanics, as a limit and yet depends on it to have a meaning?
Which one is more fundamental? Must the world be described by these two completely different
theories? For an excellent discussion about these points, see the book of Omnés [21].

As we can see, this interpretation cannot be applied to quantum cosmology because there is
no classical domain in a quantum universe that could give a meaning to the gquantum theory.
Thus, we must seek other solutions to our problem.

One solution ia to think the transition from the initial state before the measurement to the final
state after the measurement, described in equation (2.36}, as an splitting of the world into many
worlds, each one containing one and only one possible result for the measurement. At each time a
messurement takes place, the world is splitted in such a way. No world has knowledge of the other.
In each world there is an observer who sees the pointer of the apparatus dislocated by an amount
proportional to a particular eigenvalue s. This is the many-worlds interpretation of quantum
mechanics {22, 23, 24|, developed with the motivation to be applied to the whole universe. This
interpretsation and some variations of it are frequently used in quantumn cosmology. It will be
discussed in section 4.

A second solution is to think that the second term in equation (2.37) which is responsible for
the quantum interference, vanishes for almost every macroscopic system. This iz not unplausible
because the sum over r involvea many degrees of freedom, as it ia & macroacopic aystem, and
something like destructive interference may lead this term to be almost zero. In fact, some
calculations show that this is indeed the case for the majority of macroscopic systems in nature,
with some exceptions that has been subject of intense investigations. This is the decoherence
effect [25, 26, 27, 28, 29] and it is so fast that it has never been observed before, It explains how
the transition from quantum to classical takes place. The applications of this idea to quantum
coamology will be discussed in sections 5 and 6.

Another possible solution to our problem is to give, like in classical mechanics, an ontologi-
cal interpretation to quantum mechanichs. This means that quantum mechanics should not be
interpreted as simply an epistemological theory of given phenomena, but that the processes oc-
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curring in the quantum world can be described by deterministic laws, and the physical quantitics
of a quantum system have a reality independent of any cbeervation. Therefore, the process of &
measurement must be described in a completely different way. In section 6 we will discuas one
proposal of this kind of interpretation [30, 31} and its possible application to quantum cosmology.

One common feature of all these alternatives is that, as the classical domain is not put by
hand, it must be obtained. In other words, quantum toamology, when provided with a consistent
interpretation of quantum mechanica, must explain why the classical world exists.

After discussing the problems with the application of the Copenhaguen interpretaion to quan-
tum cosmology, and before applying the possible alternatives to it, let us set up the dynamical
equations that a wave function of the universe should satisfy.

8. Canonical quantization of general relativity

As we have explained in the introduction, quantum cosmology is the application of a theory of
quantum gravity to the universe as a whole. However, until now, there is no consistent and widely
accepted theory of quantum gravity.

There are two basic approachs to quantize gravity. The point of departure is, of course,
classical general relativity. One is the covariant approach, which treats the gravitational field
as any other field theory. The spacetime metric is splitted in a background or kinematical part,
usually taken to be the flat metric ¥,,,, and another dynamical part Au: g = Fuw + Ghye . This
splitting ie inserted into the general relativity action and the theory is treated perturbatively,
making use of the powerful technica of perturbative quantum field theory. The quanta of the field
h,, are viewed as spin-two particles, called gravitons, propagating in the background spacetime,
and interacting with itself and with matter. This theory, however, is not renormalizable (32],
which means that if we include radiative effects, an infinite number of new parameters must be
added and the theory loses its predictive power. Then it was believed that general relativity
should be & low snergy limit of some more fundamental gravity theory with u better high energy
behaviour, exactly like the weak interaction is with reapect to the electro-weak interaction. Higher
derivative terms were added to the general relativity action. The resulting theory was shown to
be renormalisable (33], asymptotically free, but it is not unitary: it does not conserve probability.
Other theories with suitable interactions of gravity with matter were developped, like supergravity
theories, and they are unitary but still not renormalisable at more than two loops. The last
bope in the covariant approach is supersiring theory. It is generally believed that the theory
is perturbatively finite. However, Gross and Periwal [24] have shown that the whole series of
the bosonic string diverges, and they give arguments advocating that this should also happen in
superdtring theory.

As we have seen, the problems of the covariant approach are very difficult to solve. By
zolving one problem, one gets ancther, and it seems that it does not have an end. Perhaps these
difficulties are showing us that we should not assune that the spacetime metric can be splitted
in a background and & dynamical part. In " -*, this is contrary to the spirit of general relativity.
One of the motivations of Einstein to consiruct his theary was to get rid of objecta that act on
other objects and are not influenced by them. Background metrics are exactly like that. General
relativity is a theory with no background metric; the spacetime metric is known only after the
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equations of motion are solved. Therefore, we should try to construct a non-perturbative theory
of quantum general relativity. Can quantum general relativity make sense if its perturbation
expansion is not renormalizable? The answer is afirmative. There are examples of theories that
are exactly solvable non-perturbatively but which perturbation expansion is not renormalisable
[35). This leads us to the second approach: guantise gravity by non-perturbative methods. Non-
perturbative technics are being developed in superstring theory, but we will atay in the framework
of general relativity itaelf and present the canonical quantization of this theory.

The canonical approach is based on the hamiltonian of general relativity. The idea is to
obtain a quantum functional equation for & wave functional, which is analogona to the Schrodinger
equation. For historical reasons, this approach is not very popular in other quantum field theories.
Some papers have been pub].ilhed with comparisons of this approach with the more usual covariant
approach in quantum electrodynamics and cther quantum field theories [36, 37, 38]. To construct
the hamiltonian of general relativity we must assume that spacetime can be splitted into & family
of spacelike hypersurfaces and a timelike direction. It means that we are restricting the topology of
the manifold to be of the type: M* = R® M?. Hence, we are discarding spacetimes with rotation
and with closed timelike curves, in accordance with the assumptions of section 2. Questions about
the existence of closed timelike curves cannot be answered within this formalism.

Let us now split the metric into the timelike direction and the spacelike direction.

The spacelike hypersurfaces can be defined by the equations $(z*} = const.. Their normals
are given by one-forms 7 = n,dr* = G,4de*. As they are spacelike, there is always a timelike
coordinate z° = ¢ that parametrizes the hypernurfwu yielding 7, = —N&,. N is a normalisation
factor, g"™mum = —1, which implies that g™ = — g}y, The projector onto the hypersurfaces is
given by A = g""+n“q"whouoompontlmﬁw—0 A% = 0 and A¥ = g% + NgPg®®.
Defining N¥ = g*® N, the components of the contravariant metric are:

1 N L L NN
oW . = g¥ = RV _ )

3 We can calculate the inverse covariant metric g, yielding the following line element:

d’ = gudetde”

(NN° — N%)di? + 2N dz'dt + hyde'da? =

N 4 Ry(N'dt + da')(NVdt + d=7) (3.39)

where N; = h;N?, h;; is the inverse of A% and it is, by its contruction, the intrinsic covariant
metric of the spacelike hypersurfoces. Examining equation (3.39) we can see that N(t,x*) is
the rate of change with respect to the coordinate time £ of the proper time of an observer with
four-velocity n*(t,z*} at the point(t,z*). It is called the lapse function. Also, N¥(t,z*) is the
rate of change with respect to coordinate time ¢ of the shift of the points with the same label
z' when we go from one hypersurface to another. It is called the shift function. It can also be
viewed as the projection onto the spacelike hypersurface of the tangent vector % to the t-time
coordinate curves. For more details on this, see reference [39)].

Another useful quantity ia the extrinsic curvature. It measures how much the 3-dimensional
hypersurfaces are curved with respect to the 4-dimensional manifold in which it is embedded. It
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does that by comparing the normal vector 7, at one point with the parallel transported normal
vector from » neighbour point to this same point. Precisely, it is defined as follows:

LA (3-49)

The relevant components of the extrinaic curvature are;
K",' = "‘N I‘E’A
1
3 2D6Ns) — Bikis), (3.41)

Using equations {3.38), (3.39) and (3.41), we obtain for the four-dimensional scalar of curva-
ture:

R=R® 4 KSK, + K* %&K + Ef:—ia.-x - %D.(&"NJ. (3.42)

The Einstein-Hilbert lagrangian denzity can be written na:

Lz = =gR=NKP"R
NRYA(RP) ¢ KyKY — K2 — 28(h"°K) + .
+28,(hPK N ~ BVERSGN). {3.43)

There are two total derivatives in this lagrangian density. The total time derivative leads
to inconsistencies in the path integral formulation of the guantum theory [40}. Purthermore,
with this term, we cannot obtain the gravitational patt of Einstein's equations by simply varying
the lagrangian density (3.43) with respact to N, N* and hj;, and imposing, as usual, that the
variations of these quantities on the boundaries are zero, We need to impoee as well that the time
derivative of the variations of h;; are also zero. For these reasons, we will eliminate this term by
taking the modified Isgrangian density:

£ =Lp+2B{AK) (3.44)

The lsst term in equation (3.43} iz not impertant for the lagrangian formalism. In fact it is
an arbitrary term because we can add or subtract total spatial derivative terms to the lagrangian
without changing the lagrangian equations of motion. However, such terms are crucial for the
hamiltonian formalism. For apen spaces, like asymptotically flat or anti-de Sitter spacetimens, this
term must be chosen judiciously if we want to obtain the correct hamiltonian equations of motion
[41]. They also yield the total gravitational energy of such spaces (when it can be defined). They
are very relevant in the study of quantum black holes. In the quantum cosmology of & cloged
universe, however, these termsa are sero and can be discarded from the lagrangian. The reader
may ask why quantum cosmology doex not deal with open universes. First, closed universes
are technically simpler and conceptually richer. We hope the reader will be convinced of this
assertion by the end of these lectures. Second, there are path integral arguments claiming that
open universes are not probable. We will return to this point in section 5. However, there is no
convincing argument pointing in this direction. Therefore, we will make & comment every time
the presence of such terms can give different results.
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Hence, the gravitational lagrangian density will be taken to be:

LIN, N* by = NWWNRD 4 K9 K — K. (3.48)
The total lagrangian ia evidently given by:

L= f Lz (3.46)
Variation with respect to N, N* and h;; gives the projections of vacuum Einstein's equations

Gy’ =0, Gun*hY, = 0 and G.hghZ = 0, respectively.

Let us now construct the hamiltonian of general relativity. As the lagrangisn density (3.46)
does not depend on 8N and on &N, their canonical conjugate momenta are zero:

m, 0 (347)

&
~ 5(BsN*)
where N° = N

The symbol == means ‘weakly zero’ to remind us that the Poisson brackets of these quantitiea
with other functions of phase space variables may not be equal to sero.

Therefore, general relativity iz a theory with constrainta and it will be treated with the Dirac
formalism [42, 43, 44]. In the language of Dirac, the constraints (3.47) are called primary con-

straints.

The canonical momenta conjugate to h¥ are given by:
Iy = gron s = —h/(Ky — hisK) (3.48)
6(8:47) v

The canonical hamiltonian density H, is obtained in the usual way: M, = II; BA¥ — £, After
discarding a divergence term (something that is not generally possible for open spacetimes), it
yields the following canonical hamiltonian:

H = j LrH, (3.49)
- f Lo(NH + N3,

where

H = Guull7I™ — kR (3.50)‘

W = —2D01. (3.51)

and

Gt = 5 (haha + huhs — highu) (3.52)
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which is called the DeWitt metric.
" The total hamiltonian density must yield the constraints (3.47). Thus, it must be given by:

Hy = NH + N;H + 210, (3.53)

where 3 are lagrangian multipliers.

For consistency, the primary constraints muat be conserved in time: 1, = {0, Hr} = 0.
This implies that the quantities (3.50) and (3.51) must be weakly zero:

H = GilI7TI™ — AR 240 (3.54)
H = 2D, =0, {3.55)

They are secondary constraints and are called super-hamiltonian and super-momentum con-
straints, respectively. Their conservations in time do not lead to any new constraints. As N
and N have no dynamics and they multiply secondary conatraints in the total hamiltonisn, they
can be viewed as Iagrangian multipliers of these constraints, and they can be eliminated from the
phase space of the theory [44]. Therefore, the hamiltonian of general relativity is simply given
by:

Hor = f P(NH + NjH) (3.56)

1t can be shown that the secondary constraints have weakly zero Poisson brackets among each
other. They are called first class constraints. There is & conjecture of Dirac saying that all firat
class constraints are generators of gauge transformations. In fact, it can be shown that:

Shilz) = (his(e), [ Pye)Ha)} = Diki(z) + Diksle) = Lehis (3.57)

Shi(x) = {huta), [ EUWIMWNY = ~H(@)Kii(z) = ((=)Lahi (3.58)

where £ is the Lie derivative along the infinitesimal spacelike vecior { and £, is the Lie
derivative along the direction orthogonal to the spacelike hypersurfaces with metric hi;. The
function {(z) ia infinitesimal. Analogous results can be obtained for the momenta Ii;. Therefore,
the first constraint is the generator of spatial coordinate transformations while the second one is
the geperator of time reparametrization, which are the gauge transformations of the theory. As
can be seen from equation (3.58), the second constraint is also responsible for the dynamics of
the theory.

_Variation of Han with respect to N and N* yields the constraint equations H = 0 and
H* = 0 which are the vacuum Einstein’s equations "% = 0 and Gun"Al, = 0, respec-
tively. The evolution equation. for AY gives the definition of IL; shown in equation (3.48),
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which, combined with the evolution equation for IL;, yields the dynamical Einstein's #quation
G bRy — 2heiCopun™n® = 0.

As we can see, the vacuum Einstein's equations are obtained from a phase space composed of
all poasible hypersurface metrics 4%(z) and their canonical momentum I1;;{z), which means that
the configuration space of the theory ia composed by all possible #'%(z). A particular spacetime
solution of Einstein's equations can be viewed as a trajectory in the space of all A%(z). By making
an analogy with the dynamics of particles, A¥(z) — z* and II%(2) — p*, we can interpret the
first term in the constraint (3.50) as a kinetic term, Giu(hi;) given in equation (3.52) playing
the role of a metric in the space of metrics (like & g;(z) in the case of particles), and the second
term as a potential energy.

As can be seen from equation (3.56), the hamiltonian of general relativity is numerically zero
because it ia & combination of constraints. However, if we were considering open spaces, the spatial
surface terms I have discarded may appear and the total hamiltonian is not anymore numerically
sero, In fact, for asymptotically flat spacetimes for instance, these surface terms yield their total

energy.

Zero hamiltonisus are characteristic of time-reparametrization invariant theories, as ie general
relativity. Take as an example an action describing the classical dynamics of a system of particles:

; da'
5= j I, ) dt (3.59)
Let us define & new paramater v and freat time as a new coordinate depending on 7. The
new action is:
oy it
5= f ERSOIE S _[ (¢, i, 5%) (3.60)
where the dot means derivative on 7.

Thia action is now invariant by reparametrizations 7' = /(). Let us calculate its bamiltonian.
The canonical momenta are:

= 3’* - ? =n (3.61)
o = % = —H(z".p’-,i)-z _H(zi) ".i)t) (3'52)

where H(z",p;,t) denctes the original hamiltonian of the system. Equation (3.62) is a consiraint
equation; no time derivative of phase space variables appear in it:

g + H(zi: X3 t) Q) (363)
The canonical hamiltonian is easily calculated and it is:

H(ts zi: oy fl'] = t‘[fu + H(zi: LT t)’] (3'64)
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which is gero due to the constraint (3.63).
The total hamiltonian will be given by:

Hr = N[xo + H(zi: x5, t)] (3.65)

where N is a lagrangian multiplier. This bamiltonian is also zero.

The reader can verify that thia hamiltonian gives the correct equations of motion, and that the
constraint (3.63) generates the gauge transformation linked with the reparametrization invariance
of the theory. It is the analog of the constraint (3.54).

Let us return to general relativity and try to quantize the theory. We will work in the Aj;
representation. The rules for quantisation are:

i) Transform phase space variables into operators acting on functionals of &; and #, W[k, 8-
it) Poisson brackets turn into comutators. In particular:

(=), %)} — o lhita) I (3.66)

This means that we can write:

Y
I = ‘-Ihs—hﬁ, (3'67)

iii) The wave function ®{hy;,#] must satisfy the Schrodinger-like functional equation:
L -
229 _ gonaing, o (3.68)

where Hgg is the operator coming from the classical hamiltonian (3.56).

What will be the quantum versions of the constraint equations (3.54) and (3.55)7 They cannot
turn into operator equations due to rule {jii). In fact, if we demand that equations (3.54) and
(3.55) ate operators identities then all comutators with them would be sero. But not all Poisson
brackets involving the constraints (3.54) and {3.55) are serc and thia would be a contradiction
with rule (ii). But constraints (3.54) and (3.55) are first class constraints and there will be no
contradiction if we impose them, as Dirac suggests, as conditions on the wave function ¥[hy,t}:

AUk, t) =0 ' (3.69)
P e(h;, =0 (3.70)

If equations (3.69) and (3.70) are correct, then the right-hand-side of equation (3.68) is zero
and it implies that ¥ does not depend on .
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Let us go back to our previous example of a time reparametrization invariant action of a
system of classical particles to understand what is going on.

If we follow the Dirac rules in this example, the Schrodinger equation will simply imply that
the wave function does not depend on 7. Linposing the constraint equation (3.63) as & condition
on the wave function,

[#o + H(s* %5, 8)|¥(t,2") = 0 (3.11)

gives the original Schridinger equation of the aystem.

As the constraint (3.54) ia the analog of the constraint (3.63), we expect that equation (3.69)
containg the dynamice of the wave function. Let us write explicitly equations (3.69) and (3.70):

 SE(AY) \
AD; 0 (3.72)
(NG LT 4 BRRDGE) = o (3.73)

(we have set & =1).
The first equation has & simple interpretation. Make an infinitesimal spatial coordinate trans-

formation
P 3 (3.74)
The spacelike metric changen in the following way:
hig = by + 2D (3.75)

The new wave function may be expaunded yielding:
59
W[hi; + 2Dkn) = by + j & 329(-'25)6—,‘6 (3.76)

Integrating by parts the second term of the right-hand side of the preceding equation, and as
we are aupposing that the spacelike hypersurfaces are closed, we obtain the following expression
for the change in ¥:

se=-f “d“"-"D‘(:Tt) =0, 3.7

where we have used equation (3.72). It means that the value of the wave function does not change
if the spacelike metric changes by a coordinate transformation. Therefore, equation (3.72) implies
that the wave function is a functional of the equivalence class of metrics which deacribe the same
geometry, not of one particular metric. It is a functional defined on the space of all spacelike
geometries, not on the space of all spacelike metrics. The space of all three-dimensional spacelike
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geometries is called superspace. This is the quantum version of the meaning of the constraint
{3.55), which classically was interpreted as the generator of epacelike coordinate transformations.

Let us turn to the equation (3.73), which is called the Wheeler-DeWiit equation [4]. This
equation is the analog of equation (3.71) for particle dynamics. We should expect that the
dynamics of the wave function be contained in it. Like in equation (3.71), there should exist
one momentum which is canonically conjugate to the time in which the quantum dynamica takes
place. In equation (3.71) this particular momentum ia easily distinguishable from the others
becanse it appeats linearly in this equation, while the others appear quadratically. However, in
equation (3.73), there is no momentum which appears linearly; all of them appear quadratically.
Hence, where is time? (Once again it should be reminded that if we were working with open
spaces, the total hamiltonian would have had extra surface terms and the Schrédinger equation
of the problem would no longer be trivial: the wave function would depend on time).

There are some proposals of solution to this problem, which is called the issue of time. We
will now expose some of them:

i) The DeWitt metric (3.52) is & 6 X 6 matrix per space point and it can be shown that it has
signature (—, +,+,+,+,+) (4. The minus sign is related to the square root of the determinant
of the spacelike metric [4, 45, 46], v'h. Thus, it scems that we should identify this quantity with
time. However, +/A ia the volume of the spacelike hypersurfaces. Does it meaa that if the universe
recolapses time will go backwards? Quite unplausible. Furthermore, as the DeWitt metric has a
Lorentzian signature, the Wheeler-DeWitt equation (3.73) is like a Klein-Gordon equation with a
variable ‘mase’ term, RPX A7), which depends on the ‘time' +/h. Consequently, if we want to give
some kind of probabilistic interpretation to ¥, we will have o face all the problems with negative
probabilities which are characteriatic of this type of equation. The presence of the variable ‘mass’
term turns this problem difficult to solve [47].

In quantum field theory, this problem is solved by second quantizing the Klein-Gordon field.
This field operator is expanded in creation and annihilation operators of spin sero particles. The
vacuum state is the atate with no particles. If this quantum field is submiited to a time variable
potential energy or if it is embedded in a time variable curved background, then spin zero particles
are created out of the vaccum.

For the Wheeler-DeWitt equation, this procedure would lead us to & third quantization of
gravity by quantizing the wave function itself (48, 40]. The particles are now universes that
can be created by the action of creation operators which are obtained by an expansion of the
wave function, which is now an operator. The vacuum state is the real nothing, the absence
of matter and spacetime. As the DeWitt metric (3.52) as well as RGYAY) depends on vh,
which is considered here as ‘time’, then this quantum wave function is like a quantum scalar field
propagating in a time variable curved background and submitted to a time variable potential
energy. Thus, universes can be spontancously created from nothing! This is a very exotic and
attractive picture. Note that within this picture, it may be possible to explain why the constants
of nature have the values we measure of them {50, 51].

i1) We could try to find some variables where the Whesler-DeWitt equation (3.73) has the
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form of equation (3.71). In fact, this is possible but only implicitly [47, 46]. The variable that
plays the role of time is the trace of II;; which is proportional to —# defined in equation (2.12). It
is a good choice because it is a monotonically increasing function of time whenever the dominant
energy tondition is satisfied (see equation (2.21)).

ili) The fact that it is not sasy to find what should play the role of time in the Wheeler-DeWitt
equation simply means that there is no time in quantum gravity [52, 53]. In fact, the analogy
with the quanium mechanics of particles via the time reparametrization invariant action {3.62)
is not apropriate. One should take the Jacobi action

5= f dry/FsT (3.78)

where Fg = E—V and T = 10 m4E 4, This is the apropriate action when a closed
conservative systemn ia studied. The conserved energy is E, and V and T' are the potential and
kinetic energy of the system. This action yields the Newton equations of motion if a suitable
choice of the parameter v is made such that T = Fg.

The hamiltonian can be calculated in the same way as before and it turns out to be proportional
to the following constraint:

%}“:l%_p.mu (3.79)

Following the Dirac quantization scherne, this constraint yielda the following quantum equa-
tion:

Y i i

which is the time independent Schrodinger equation.

This is the correct analogous equation to the Wheeler-DeWitt equation (3.73) because it is
also quadratic in all momenta. Consequently, we should consider the Wheeler-DeWitt equation
as a time-independent Schrodinger equation.

How can we physically justify that? First note that time appears in quantum mechanics as
an external parameter. If we want to describe an open aystem, like an ensemble of black holez we
will need open spaces, like asymptotically flat spaces. Comsequently, the hamiltonian of general
relativity will oo longer be sero and the wave function will depend on time, as reminded before.
This time comes from the asymptotic structure of such spaces. Thus everything is coherent; time
appears because there is an external place where it can come from: the asymptotic structure.
However, for closed spaces, there is no place where it can come from. We are quantizing every-
thing, nothing ia left. Furthermore, as we have commented before, apace geometry is like position
in ordinary particle mechanics while spacetime geometry is like a trajectory. As trajectories have
no sense in the quantum mechanics of particles, only instantanecus positions have, we can con-
clude that spacetime has no meaning in quantum gravity, only space geometries have. Hence,
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time has no sense st the Planck scale. Therefore, it is quite natural that the Wheeler-DeWitt
equation of closed spaces be time independent. It is a time independent Schrédinger equation for
zero energy, aa it should be!

The reader may object that we should expect that the gravitational field should behave like
a massless spin-two field and have two degrees of freedom, like in the weak field limit . However,
nothing can assure ue that this conclusion can be extended to full quantum gravity.

How time can be recovered? It can be recovered only at the semi-classical limit, where
geometry becomes classical and spacetime has a sense. To show this, let us take the semi-classical
limit of the Wheeler-DeWitt equation, now taking matter into account (54, 55, 56):

[)

[Gm sp.,, gig RS + B, &) (i1, 9) = 0 (3.81)
where M = %

The reader may convinoe himself of the last term of equation (3.81) by adding to the lagrangian
density of general relativity (3.46), for example, the lagrangian density of a minimally coupled
scalar field and follow the same steps we have followed to arrive at equation (3.73).

An we are interested in the limit of classical gravity and quantum matter, we will conxider the
limit where G is small (M is large) as compared with some combination of Planck’s constant
and the coupling constants of maiter.

We write the wave function as:
¥ = 5/ {3.82)

and expand 5 in the form 5§ = M5 + 51 + M1 5,...
In the highest order M? we obtain:

( )’ =0 (3.83)

This means that 5; depends only on the metric.
In the next order M! we have:

450 85,

(G‘Jushu J’Iu

+A2R =0 (3.84)
This is the Hamilton-Jacobi equation for vacuum general relativity and they are equivalent to
the vacuum Einstein’s equations in the sense that once a solution Sy of this equation is finded,
the spatial geometry can be integrated to yield the spacetime geometry.
In order M° we have:

55,85 ik 580 559 1 &5

G ( lﬁ 6'51
M Ehi ha | 2 "“sr-.,sa.. 2vh' &

T WA T (3.85)



253

To understand this equation, we define a new functional
£ = D(h¥)eir C (388)
where the functional D(A¥} satisfies the equation:

58D 1o 6585
G.,‘us—hﬁm - § ""'6!;;,- JﬁuD =0 (3'37)

In terms of f, aquation {3.85) can be written as:

N N

This is a Tomonaga-Schwinger equation [57] describing & quantum scalar field propagating
in & curved classical background which is the solution of equation (3.84). The many fingered
time 7(z) is the time associated with observers with four velocity n* which are orthogonal to the
surfaces Sy = conat. at each spacetime point. It is the natural definition of time because },;i(; is
just the momentum conjugate to the classical solution A%, which ia linked to the Lie derivative of
A¥ with respect to the normal vector to the hypersurfaces where 4% is defined, Therefore, time
appears when spacetime becomen classical, as we have seen®.

One could also try to compute the back reaction of the quantum field ¢ into eguation (3.84)
in order to obtain the semiclassical Einstein's equations:

G = — <Tou> (3.89)

Thia problem is treated in references [54, 55].

In thin section we have obtained the Schrédinger-like equation for the quantum wave function
which ig, in the presence of matter, the Wheeler-DeWitt equation (3.81). We have seen that there
is no time in it. In the next section, we will try to interpret this wave function and try to extract
physical information from it.

4. Predictions from the wave function of the universe

As we have emphasiged in section 2, we need a new interpretation of quantum mechanics that can
be applied consistently to the wave function of the universe, which is a solution of the Wheeler-
DeWitt equation {3.81).

In quantum mechanics, the sole sentence we can affirm with certainty, which is independent
of probabilities, is that the measurement of some observable B of a quantum aystem in a state
which is ‘an eigenstate of this observable corresponding to the eigenvalue b, yields the value &.

$See, however, Ref. [56] for a discussicn on conditions for thin time be well defined.
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This state, when expressed on the basie of eigenvectors of B, will bave only one component
different from sero: the one associated with the eigenvalue 7. Therefore, we could try to find
the operators from which a solution of the Wheeler-DeWitt equation in an elgeufunchon It ie
evident that itis a very difficult task, perhaps with no solution.

We could try to relax this eigenstate restriction, and create the notion of an approximate
eigenstate, which is defined as an state whose wave function has a sharp finite peak at one of
the eigenvalues of B and smoothly goes to zero outside it. This bring us to a version of the
many-worldss interpretation of quantum mechanics cited in section 2. In this version [58, 59],
the predictions of quantum mechanics are described in terms of precluded regions. The values
of some observable for which the wave function is small, not necessarily zevo, are impossible to
be obtained. Note that the usual interpreiation of quantum mechanics says that small regions of
the wave function are not precluded or impossible; they only have a small probability to occur.
However, we cannot talk about probabilities in the quantum mechanics of a individual system.
Hence, within this aliermnative interpretation which attempts to be applied to individual systems,
srmall regions will be treated as precluded regions. Geroch shows in his paper [58] how some known
predictiona of quantum mechanics can be obtained with the use of this notion of precluded regions.
He also emphasises that if there is some prediction of quantum mechanics that cannot be said in
terma of precluded regions, thia interpretation must be discarded.

If the individual quantum system is divided into many identical quantum systems, we should
expect that the old interpretation in terms of probabilities could be obtained. This can be shown
in the following way (for details, see Ref. [50]): suppose we have au observable § which, for
simplicity, have a discrete spectrum. Iis eigenvalues are a; with respective cigenstates [¢ .
Suppose also that the state of the individual system |¥ > can be writen as a tensor product
[x>> ® |tp>> where the state |¢> is alno a tensor product of N identical subaystema:

fe>=¢r> @... ® ;> ®... & |Pn> (4.90)

The identical subsystemns are in identical states which can be expanded in the basis of cigen-
vectors of 5 as;

ii>=Ip>=3 ali> (4.91)

The first equality expresses that the |¢; > states are identical. The index 7 is written just to
remind us that the states |¢$; > belong to different Hilbert subspaces.

The atatea |¢; > are normalised which means that:

el =3 d<dli>'=1 (4.92)

We will be interested in the part of the total quantum individual system | > given in equation
(4.90). Let an observer measure the observable § on each of the identical states |§, >. He will

_'Intheuﬂo(lmﬁnuoulmctrum.the isted wave function will be & Diirac delta. For instance, let
B be the position operator. Ita ‘cigenstate’ with cigenvelue o' is [#/ . The amocisted ‘eigenfuction” (in quotes
becanse it in nct aquare intagrable) ia < z|2'>= §(a — 2').
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certainly obtain one of the eigenvalues s;. Let us define the relative frequency operator as:

R &g
foy==5, . Ja>®.0 li>8. ®|1N>——2-*N—;;I—<m|® R <] ®..8 <i] (4.93)

where the the sum over each §; isperformedinordertomaﬂpuﬁbleeigmwctonofgat
each subapace labelled by the index ;.

The eigenvectors of thia operator are [i; > ®... ® Jix > (one for each sequence of possible
measurement results {s;,...8,}):

N
: . bty . .
Fleli> ®.. ® lin>= E—’},‘Ah,;« ®...® |in> (4.94)

As we can see from equation {4.94), the eigenvalues of the relative frequence operator fla)
is, as the name indicatea, the relative frequence in which the particular eigenvalue a; appears in
the sequence {a;,...0;,,} corresponding to the eigenvector [i; > ®... ® [in>.

Let us now calculate the. norm of the ket f(s:)|p> ~|a|*/p >. This will be given by:

| Fle> —lalle> P =<elffle> —2af <elfle> +al* (4.95)
First note that:
EN 5{. 6!
P =T olin> €8 lix >—!N—E*=' b Cin] @ @ <il (4.96)

The second term in the right-hand-side of equation (4.95) is proportional to:

<plfle> = 2 | < falir> |’...2‘.”| < ¢ulin > (e, + .- + &i,)%
| <4ft> =lal’ {4.9m)
where we have used equations (4.90), (4.91), (4.92) snd (4.93).
The first tarm is proportional to:
<plffle> = X, |<tlr> P3| <dulin>['.
(Bre briy + - + Srinbrig + 2000, 615y +25h'16h'a"')% =

mz__l)lqr) ' (4.98)

1
(Nl +2
where we have used equation (4.96).
Subetituting equations (4.97) and (4.98) into equation (4.95), we obtain:

Hfle> —lafle> * = %{IQI’ = lal*) (4.99)
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In the limit where N goes to infinity, the above norm is zero which means that [p > is an
cigenstate of the operator f{s;) with eigenvalue |g|*. Tf NV is very large but not infinity, the total
wave function |p > in the representation of cigenstates of f(a;) will be sharply peaked around
the value |g|*. H we use the interpretation that a peak in the wave function is & prediction,
we can say that the relative frequence in which the particular eigenvalue s is found in a very
large sequence of cutcomes of measurements of § on each of the identical states |$ >, which is
nothing but the probability of finding the eigenvalue & in & measurement of § in the state |#>,
is exactly equal to ||*. Therefore, we recover the usual probabilistic interpretation of quantum
mechanics. Note that, in practice, we never make an infinite number of measurements in order
to test this probabilistic interpretation.

This result is very atiractive and some people clame that this kind of interpretaticn is more
fundamental then the usual one because probabilities are obtained, not postulated®.

Adopting this new interpretation, we need to find peaks in the solutions of the Wheeler-
DeWitt equation in order to make predictions. However, such solutions are very difficult to
find. Furthermore, it is hard to extract physical information from therm, due to the absence of
the notion of time at the Planck scale, as pointed out in the last section. Can we find other
quantum functionals which are more likely to have peaks and which are easier to extract physical
information? To answer this question, let us return to ordinary quantum mechanics, There we
can construct phase space functions from operators which are functions of X' and P by the s0
called Weyl-Wigner formaliam. In this formalism, a correspondence between an operator A which
is expressible in terms of coordinate and momentum operators and a function on the phase space
of the theary A(z,p) in proposed as follows:

A(s,p) = TH{A [ dy [ doexp SUP - py + (R = 9)]) (4.100)
where f is the number of degrees of freedom of the system.
The inverse relation is given by:
A= oy [ ds [ aphtz,p) [ dy [ dwexn LB - Py + (R - 2)ol} (4.101)

Note that A(z,p) depends on % and it is a quantum function.

Cther correspondences could be defined. However, these alternatives are unsatisfactory for
studying the classical limit. See Ref. [61] for more detaila on this.

One interesting phase apace function ia the Wigner function, which ia the Weyl-Wigner trans-
form of the density matrix |¥><¥|. It is given by:

Flo.p) = [ du®'(z ~ Su)9(z + Su)exp(~im) (5.102)

It satisfies the following properties:
[@Fen = )P
* However, obiections to this proof have already been made [60].
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[&aF@e = M) (4.103)

The idea proposed in Ref. [62] in to find peaks of the wave function of the universe in the
phase space of general relativity by looking for peaks of its corresponding Wigner function of
the theary. This idea is motivated by the following reasoning: a semi-classical wave function, in
ordinary quantum mechanics, is writen in WKB form aa:

Yw(z,t) = Alz,t)explzS(z, 1) ' (4.104)
where A in a slowly varying function of z and § satisfies the classical Hamilton-Jucobi equation

_ 05(=,t) _ 85(=,1)
a‘ - H(:u,p - az ) ) (4'105)

This equation is cbtained by inserting the wave function (4.104) into the Schrodinger equation
of the system and keeping oply the order-5® term®.

If we insert this wave function in the Wigner function (4.102), in order- 4°, the result obtained
in Ref. {62] (which is not true, as will see later on) is:

Fle,p,) = (08t - 2522ty (4.106)

Therefore, WKB wave functions have a peak on the first integral of the equations of motion
p= !%‘5‘9) If we accept this as a prediction, then f classical solutions are selected out of the
2f possible classical solutions of the theory. Furthermore, the prefactor |C(2)|? can be used as
a probability measure on this set of trajectories, as we will see later on. The proposal of Ref.
[62] is to follow an analogous procsdure: cne taker the WKB wave function of the universe and
calculates ita Wigner functional defined on the phase space of general relativity in order to find
the moat probable classical cosmological solution of the Einstein’s equations.

Let us see an application of this program to & simple example, which is extracted from Ref.
[63). Here we will introduce the notion of a minisuperspace model. The Wheeler-DeWitt equation
(3.81) is a very complicate functional differential equation, which is equivalent to an intricate
system of partial differential equations, one for cach space point z°. To solve this equation is
evidently very difficult. One usually simplifies it by freezing the degrees of freedom of gravity by
reducing the superapace to a minisuperspace where only a finite amount of degrees of freedom
are still avilable.

More precisely, expand the spacelike metric and its conjugate momentum in some complete
set fu:

Wi(z,) = B (1) + 3 A (£ falz) (4.107)
Ms(e, t) = 0§() + 37 I (=) (4.108)

*To show this, is necomary that the classical hamiltonian be & quadrstic function of p.
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A minisuperapace is the set of all spacelike geometries where all but a set of the h:;’;](t) and
the corresponding ﬂs:){t) are put identically to sero.

Evidently, this procedure violate the uncertainty principle. However, we expect that the
quantigation of these minisuperspace models retains many of the qualitative features of the full
quantum theory, which are easier to study in this simplified model. For more details on minisu-
perspace models, see Refs. (64, 65, 82).

The minisuperspace mode] we will discuss was developped in the context of a theory in which
gravity is non-minimally coupled to electromagnetism 9], the Lagrangian being given by a com-
bination of Finstein’s and Maxwell’s theory plus an interacting (non-minimal} term:

£=v3 [_i FuF™ + % R+ arRW,.W,g"’] +8 [2:.‘»"1( (% + a'W,W,g"")] (4.109)

where ¢ is a dimensionless positive coupling constant, W, is the vector potential and F, =
3,W, — 8,W,. The surface term appearing in the lagrangian (4.108) is a generalization, due to
the non-minimal coupling, of the one added in general relativity in equation (3.44).

The field equations of this theory are:

(1+eWC = —% B, + 0O{W)g,, — cRW, W,
eV V(W) {4.110)
V.F™ = 20RW* (4.111)

where W? = ¢®W,W,,, O is the covariant Laplacian operator, and B := FuaFo+1 g FasF*,
{(We have put k= 1).

Our minisuperspace model is characterised by the following ansats:

{ ds' = —N3()dt? + a?(8)d0} (4.112)

W. =(¥(:),9,0,9,)
The four-metric is of Robertson-Walker form, where 40} is the metric on the spatial sections

with constant positive or negative curvature e(e = +1 or € = —1 respactively). The topology of
these sections is considered to be closed.

With these asaumptions it follows that F,, =0 = E,, aad
W= g*W, W, = —¢*/N? = ¢ (4.113)
Defining 8 := (1 — o¢?), and substituting =, ¢, ¢ and N into the field equations (4.110) we

obtain, after some manipulation:

§+3;_a_“5§ =0 (e.124)
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From the above equations we obtain the following constraint {no second-order time derivative
appears);

4 + ad g+:N' =0 (4.115)

We define the associated minisuperspace action substituting the restriction (4.112) directly
into the lagrangian {4.109), yielding the action:

§:= f dtL{a, 8, N) {4.116)
in which
= —(eN off — 1';‘-9- - -“-}'i

up to 2 multiplicative constant. Let us point out that the constraint (4.115) can be obtained by
vaniation of this lagrangian with reapect to N.

The equations of motion obtained from the action (4.116) form a aystem which iz equivalent
to the system (4.114). This result validates the interpretation of our model as a minisuperspace
model™,

The calculation of the Hamiltonisn from the action (4.116) yields:
L 1T
H=N [—a—?‘+ﬁ 2 +fa] = NN (e

where II, and I, are respectively the moments associated to the variables ¢ and 8, and N plays
the role of & Lagrange multiplier. Variation of the above hamiltonian with respect to N yields
the minisuperspace version of the super-hamiltonian constraint (3.54), H = 0, which is nothing
but the constraint (4.115).

We can notice that, if we proceed through the Dirac quantization of our model using the
variables (a,8), the Hamiltonian (2.9) leads to factor-ordering problema'. In this minisuper-
space model, it is easy to cireumvent such a difficulty. Let us introduce a new equlvalent set of
coordinates (:,y] and set

{’ =As (4.118)

t ]
y =%

197n general, the simple substitution of an tx into the plete action of the theory gives an action whose
squations of metion are not equal to the equations of motion of the full theory icted to the ts. These
procedures may oot commyate. This is usually the case when the constrainta (3.56) are not identically sero.
Therefore, we must be very ful with the p dure of obtaining the correct minisuperspace cquations.
UThis is characteristic of the Wheeler-DeWitt cquation (3.74) wnd it i one of the problems we have to face in
the canonical quantization scheme [66, 87, 48],
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The action (4.116) ia then given by
1 ..

s=fa [zNz - =,] (4.119)

The general solutions to the equations of motion are:
v = _E;’.. +2 (#.120)
z = e (4121)

which can be expressed as
«?

ym-e 4 (4.122)

where ¢ and E are integration constants.
Az it can be seen from equation (4.120), we may have the following possibie classical solutions:

a)Fore=1.

For I3 0, there is a singularity on ¢ = —/T when the universe is created, it expands till
maximum size at ¢ = 0, and then recolapse at t = vE

K E £ 0, there is no classical solution.

b)Fore=-1

If &> 0, the universe is flat at ¢ — —co, contracte te its minimum size at { = 0 and then
expands to become flat again at £ — o0o0. No singularities are present: it is an eternal universe.

If £ =0, it is just the flat spacetime in Milne coordinates.

If £ <0, we may have a universe that contracts from flat spacetime till a singularity or an
expanding universe coming from a singularity and going to flat spacetime.

Thus, for £ = —1, there is the possibility of having eternal or singular universes, depending
on the constant of integration X.

It is here where quantum cosmology enters. The idea is to apply the proposal of Ref. [62],
which sustaing that semi-classical wave functions are peaked on the correlations p; = ﬁ'&—l,
and apply to this problem in order to see if one of the cosmological classical solutions (eternal or
singular} of the problem we are now studying can be selected. We are taking this minisuperspace
example because most of the qualitative features of minisuperspace quantum cosmology can be
easily discussed due to the simple calculations it involves.

Let us then quantize the theory.
The Hamiltonian of the new action (4.119) is given by

H = - N(ILIL, + cz) (4.123)
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which yields the super-Hamiltonian constraint
H:= (LI, +e2) =0 (4.124)
where l'l.=—-§ and II,:—%.
The quantum version of equation (4.124) yields the minisuperspace Wheeler-DeWitt squation,

which governs the dynamics of the quantum state ¥{z,y). For our model this equation ir given
by:

H (z. —i a%’ —i a%) $(z,¥) =0 {4.125)

where 7 is the operator version of equation {4.124).
The explicit form of equation (4.125) in:

- 36:—;; +eap=0 (4.126)
A solution of (4.126} is given by
¥(z,¥) = doexp [\/—_.-: (zny - %)] (4.127)

where b and 2, are arbitrary complex conatants.

Note that ¢ is an eigenfunction of the momentum operator II, with sigenvalue —iv/~€ 2.
In arder for this eigenvalue to be real, 2o must be real for £ = 1 or pure imaginary for £ = —1.

Thus, we may write equation (4.127) aa:

x

We) = e [ (a—c 3 )] (4.128)

where ¢ is & real constant. This wave function is also & semi-classical wave function because the
argument in the exponential of equation (4.128)

2
T
S (4.129)

in the complete solution of the Hamilionian-Jacobi equation of the model

- tee=0 (4.130)
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The general solution of equation (4.126) constructed from the particular solution (4.128) is:
We) = [cemp|-i(a-c )]
f deF(c)exp [4 (cy - ;;—: + ,e(c))] (4.131)

where G{c) = |G(c)|e™A=} = F(c)) is an arbitrary complex function.

We are interested in the wave function of the universe leading to a classical universe. In
particular we want to know which of the possibilities of having an eternal or a singular classical
universe is predicted. The occurrence of eternal or singular solutions depends on the sign of the
constant ¢, as discussed above. As it is impoasible, in the above model, to obtain a classical
eternal universe with £ = 1 we will, from now on, limit our discussion to the case £ = —1.

The idea that a quantum solution predicts a classical universe is meaningful, of course, only
in the semi-classical limit which will be identified here with the behawour of the wave function i ln
the region where the scale factor is very large. Both quantities z? and y are proportional to a?
(a is the scale factor) and so is the term (cy+;) in the phase of (4.131). Hence, when a — o,
this phase varies rather rapidly, enabling us to approximate y(z,y), in the semi-classical limit,
employing the stationary phase method. The stationary phase condition applied to equation
(4.131) yields:

dﬂd(:) +y- % =0 (4.132)

Suppose that equation (4.132) have N solutions, ca{z,y)},n =1, -+, N. In the semi-classical
Emit, ¢(«,y) can be written as

1":(3'5‘) = f:lF(Cu(%r])ﬂ'P(—isn(“:?)] (4'133)

with 5, defined by

o) = = Bl +velon) + 5| (4134

It is casy to show that the Sy(z,y) given by equation (4.134), are solutions of equation (4.130)
with € = —1:
85 88 i

o vkl {4.135)

In the theory of the nonlinear partial differential equations of first order [68], it is called the

general integral of equation (4.135). This type of equation admits two other sets of solutions: the
complete and the singular integral. The complete integral of equation {4.135) is given by:

Sez,y) = —oy - :c-: (4.136)
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which is the solution {4.130) for £ = —1. There is no singular integral of equation {4.135).

The functions S,(z,y) given by (4.136) can be used to construct another set of semi-classical
wave functions by the WKB approximation method. These WKB wave funclions are approximate
solutions in first order of K of equation (4.125) (with £ = —1) and have the form:

Yw(=,y) = Alz,y) expliS(z,)] (4.137)

For the particular case of equation (4.126), the functions A(z,y) snd S(z,y) must satisfy,
besides the Hamiltonisn-Jacobi equation (4.135), the following equation

HA 08 BABS 58 _
E§+W'5;+azayli—ﬂ (4'138)

Using S.(2, ) given by (4.136) (which satisfies equation (4.135)), noting that £ = 0, and

solving the above equation by the separation of variables method (A(z,y) = X(=)¥(y)), we
obtain for the prefactor A(=z,y)

" A(2,y) = Bexp [W (—cy + %)]

where B and W are real constants,
Thus, we obtain for the WKB wave function (4.137):

$w(z,1) = Bexp [w (-o+3) - (cy + :—)] (4.130)

The semi-classical wave function y..(z,¥) given by equation (4.133} also satisfies the WKB
equations (4.135) and (4.138). To sec this, differentiate equation (4.132) with respect to z and y
to obtain the following differential equation for &(z,y)

e
I
ls
oI

Using again the separation of variables method, we can obtain the general solution

vE+H

c(a, y') = ivﬁ [4— 140)

where «y and & are constants of integration.
The functions §{c) that yield these solutions are of the form

= 1
Ble) = —ac+ -
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Subatituting into equation (4.134), the functions S{z,y) are:

Su(z,y) = ty2Ay —a) 2 + Iy (4.141)

Tt is easy to show that S.(z,y) satisfy equation (4.135), and that every smooth function
F(c) (the prefactor of f,c) together with Si(x,y), satisfy equation (4.138) when a>> 1. Also,
|VF| <<1 for a>> 1.

The wave functions ¢, and Yw given by equations {(4.133) and (4.139), respectively, are
the most general forms of WKB solutions in the form ¥ ~ e where 5 is & solution of the
Hamilton-Jacobi equation. (The prefactors should satisfy the relations [VF| ~ VAl <<1).

Aa mentioned above, these wave functions have a peak on the correlations p; = % y Where the

¢ are the minisuperspace variables and the p; their canonical momenta. These correlations are
in fact first integrals of the classical equations of motion. For the semi-classical wave functions
given in equations (4.133) and (4.141} they yield:

=05 _ BV —a) (4.142)

n,="’%*=¢"; L] (4.143)
Vi(w—a)
In the gauge N = 1, I, = —y and II, = —i. Hence, the above equations yield:
dy O _%*
dz ﬁ;‘“%‘
whose general solution is
L 1ta (4.149)
¥ ata .

where ¢ is a real integration constant.

Looking to the above equation we see that T = % + «. Therefore, if we know the exact form
of Sy(z,4) (or B(c)}, it in poesible to make exact predictions about the singular nature of the
classical solutions. If both o« and < are positive, negative or null, the wave functions predict
eternal, singular or Minkowski universes, respectively.

Note that, in these cases, the knowledge of the function §(z,y) ia enough to make exact
predictions.
The other type of semi-classical wave functions given in equation (4.139) are peaked on

S,
H-=8=_

BN

(4.145)
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8s,
L=% ="¢ (4.146)

where 5 iz given by (4.136), which yields the following first integral of the classical equations of
motion:

Sy=—+5 {4.147)

The constant T comes again as an integration constant. Therefore, its sign is still unknown.
The knowledge of the function §(z,y) is not enough to make predictions.

However, in the semi-classical approximation, we can use the prefactor to define a measure
over the ensemble of classical trajeciories in the minisuperspace of the problem, around which
the wave function is peaked. This is done in the following way: the WKB solutions are of the
form y = A(q)e"™®). We can construct the minisuperspace vector (a vector which is defined in
minisuperapace whose indices are raised and lowered by the Wheeler-DeWitt metric)

5 = AN WVS(¢) (4.148)

where the V,; is the covariant derivative with respect to the Wheeler-DeWitt metric. Using the
Wheeler-DeWitt equation in the WKB approximation, it can easily be shown that this vector has
null covariant divergence [82]. Then we can comstruct a conserved measure on minisuperspace

P= f dP = f jido® (4.149)
if do' in the "area element” of a suitably chosen hypersurface of minisuperspace, so that ail the

trajectories of the ensemble of classical trajectories cross it only once.

Once we have defined this measure, we can calculate what is the relative measure of some of
the classical solutions with respect to the others. If this relative measure is very close to one, we
will say that this classical solution is predicted. If it is very close to zero, it ie excluded.

Let us return to our example. We define:

n=y-o5 - {4.150)

{=-y- % © (4.151)
We then obtain for j; given in equation {4.148)

¥ = exp(2cW)V (et} : (4.152)

In the plane (§,7), the surfaces { = conat. (£ is essentially S. given in {4.136)) are orthogonal
to the classical trajectories (4.147) (by virtue of equations (4.145) and (4.146)) which have n =
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I = const. Thus, the vector 7 points largely in the § direction. Choosing the surfaces o in
(6.169) to be the surfaces of constant £, it will be guaranteed that 7 crosses them only once. This
choice yields for (4.148) the following equation:

4P = 7 - d5 s exp(2cWy)dy
The conditional probability of having n = E> 0 will be given by:

Io” exp(2cWn)dn
= exp2cWn)dy (4.153)

If ¢W> 0 then P =1 and if cW <0, P =0. In each case the condition |[VA| <<1as a>>1
in satisfied. Thus, we can make a definite prediction about the sign of I if we know the sign of
cW , which is given by the wave function (4.139).

We have seen that hoth wave functions (4.133) (with (4.141)) and (4.139) select one and only
one classical solution depending on the values of the constants 4 and a in the first case, and
¢ and W in the second case!?, To know tese constanis, we need boundary conditions on the
Wheeler-DeWitt equation in order to select one and only one solution with their specifics (-, «)
or (¢, W). The reader may object by saying that we have only diaplaced the problem: why not
impose boundary conditions on Einstein’s equations directly? This is because our experience in
quantum mechanics shows that it is common to have natural boundary conditions on the wave
function (usually coming from impositions of regularity on the boundariea of the space where its
arguments are defined), which sometimes are sufficient to select a unique wave function. Also, if
there is some deep principle which explains the puzzles in classical coamology, it must be sought
in the more fundamental quantum theory. We will return to these problems in the next section.

Pinp=L>0— o0 <y <co}=

Another important problem with the program suggested in Ref. [62], as we bave mentioned
before, in that it is not true that WKB wave functions have their Wigner functions peaked on
the correlations p — a_sé:-_.q_ The approximation method used to arrive at equation (4.106) is
not correct. In fact, in Ref. [61] it is shown that using the uniform approximation method for
one dimensional systems, the Wigner function of semi-classical wave functions is proportional to
Airy functions, which may have a lot of peaks. As discussed in Ref. [69], these Airy functions
are much more cloae to the exact Wigner functions calculated in some simple examples then the
Dirac-delta function (4.106). Therefore, if semi-classical Wigner functions may have many peaks,
no prediction can be made out of them. Fortunately, this ie not the case of the minisuperspace
example we have discussed in this section but in general we will have to face this problem. This
point will also be discussed in the next section.

5. Boundary conditions and decoherence

5.1) The no-boundary houndary condition

”Intheﬂ.t!t:Me,1I.npombletomlhepruhctmoulymththehwledynfthehmlton-]mmmnmon
{4.141); in the second case, the pre-factor {4.138) together with a definition of on perspace are also
HeCAmSATY.
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As was explained in the last section, in order to quantum coamology be a theory of initial
conditions of the universe, boundary conditions to the Wheeler-De'Witt equation are needed
in order to select a unique solution which will be called the wave function of the universe. The
minisuperspace example we have studied above suggested this need '*. There are many proposals
of boundary conditions to the Wheeler-DeWitt equation [71, 72|, the most popular being the
tunnelling boundary condition [73, 74] and the no-boundary boundaty condition [75, 76). Only
the second one will be discussed here.

The no-boundary boundary condition is defined in the context of what is called euclidean
quantum gravity [77]. It makes use of s path integral formulation of quantum gravity. In ordinary
quantum mechaiics, a solution of the Schrodinger eguation can be written as a path integral in
the following way:

¥zt) = [dooK(z, bz, )Wz ko)

= [ [ Deletr)exply S(ia(r)): 2,80, )} Wm0, todag (5.154)

where K(z,t;2q,%0) =< z|U(t, b))z > is the propagator, ®(zp, 1) is the initial wave function
(which reflects the way the system has been prepared), and the integration f Dp[z(r}] is over all
postible paths between (zy, 1) and (=, t)

The ground state wave function can be obtained in the following way: choose t =0, 2o =10,
write ¢ = iy, substitute in the propagator, and insert in it the identity operator written in terms
of & complete set of energy eigenfunctions:

K(z,0,0,) = <=2|U(0,$))0>=3 <=|U(0,t)pu><pul0>
2 on(=)on(0)exp(iBut’)
[ prar)explzs(e(r)]: 2,0,0,¢)} (5.155)

1

n

1t we make a Wick rotation £ = —i7’ and take the limite * — —c0, the unique term in the
sum which survives is the one with the lowest energy. Thus, we can write the ground state wave
function as:

o) = ¥ | Dratryexp{—H{le(r): 2,00, — —c0)} (5.156)

where I{r) = —S(t = —ir} is the Euclidean action, and N is a normalization constant. When
the action is the kinetic energy T minus the potential energy V, 5§ = T — V', the euclidean
action turna out to be J = T 4+ V, the total energy end, sz & consequence, positive definite.
Consequently, the path integral in equation (5.156) converges.

In quantum field theory, we have an analogous equation for the ground state wave functional:

1
%o{#(2),0) = N [ Drlg(e)}expl~z1(1#(z))} (5.157)
13 However, Ref. [T0] shows & minisuperspace example where & natural can be defined in the space of
solutions of the Wheeler-DeWitt equation. Using this measure, they show that inflation i & feature of

these solutions. This ia an example of prediction without boundary conditions.
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where the path integral is over all Buclidean field configurations ¢{z,7) o the past of 7 =0
which match with ¢(z) in the hypersurface * = 0. Aas in ordinary quantum mechanics, the
Euclidean actions of nsual field theories are positive definite.

Iz genexal relativity, the notion of gravitational energy has a meaning only in spacetimes with
timelike Killing vectors. Hence, we cannot uee the notion of energy in order to define the ground
state. The proposal of Hartle and Hawking [75] is to extend the Buclidean functional integral
definition of ground state in ordinary quantum mechanies and quantum field theory to the domain
of general relativity:

Dolhs(z), #), B = N [ Delhis(e)|Dels(e)] expi{~ 1 ml2), 2} (5.158)

where the integration is over all Euclidean four-geometries and Euclidean field configurations
which match with k;(x) and ${z) in the three-boundary B.

As was discussed in section 3, if the four-geometry is spatially open, the action of general
relativity has surface terms. For cosmological geometries, whoee metric components do not go to
zero at spatial infinity, these surface terms are usnally infinity. The Euclidean action diverges like
the apatial volume of the open universe. Therefore, in the path integral (5.158), the contributions
of spatially open geometries zeems to be zero (or infinity but then the wave function will be ill
defined), and so we will only consider apatially closed universes. This is the first feature of the
wave function (5.158); it seems to predict that the universe is spatially closed (evidently, this
is not a rigorous statement). It is in accordance with the conjecture which says that this wave
function is a kind of ground state wave function: a closed universe is the closest one to a vacuum
state because its energy and all charges are zeto.

The path integral in equation (5.158) will be over spatially closed Euclidean four-geometries.
We can parametrise the three-geometries A;; and field configurations ¢ of this four-geometry by
a parameter X in such a way that h;;(z,A = 1) = hy(z); &=, = 1) = $§(z), the arguments
of the wave function (5.158). In order to obtain a unique ¥s out of equation (5.158), we must
specify what are the values of geometry and matter fields at some other value of X, at some other
boundary. The proposal of Hartle and Hawking is that there is no other boundary; the integration
in {5.158) must be over Euclidean four-geometries which are compact in space and time. The
sole boundary is the one which appears in the argument of the wave function. The universe in
the Euclidean regime has no boundary in space or time. That is why it is called the no-boundary
propoeal. The foliation of this compact Buclidean four-geometry will necessarily reach the ‘south
pole’ of this geometry at some X, say X = 0. At this point, A¥/? = 0 but the geometry is perfectly
regular there. Thus, the boundary conditions at A = 0 are A'/*() = 0) = 0, and conditions of
regularity on the matter fields and on the derivatives of the gecometry and matter fields at this
point.

There ia a problem, however, with equation (5.158). The euclidean action of general relativity
is not positive definite. In fact, as we have seen in section 3, the kinetic term of the general
relativity lagrangean hat a metric which is not positive definite: the Wheeler-DeWitt metric.
An we have discussed there, the negative sign of the Wheeler-DeWitt metric corresponds to the
determinant of the spacelike metric h;;. It means, as can easily be checked, that if we have 2 metric
for which the Euclidean action is positive definite, a conformally related metric 5 = fl1gas may
have a negative action depending on } being a rapdly varying function.
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To solve this problem, we have to distort the contour of integration in equation {5.158) to
complex metrics and find a eontour which gives a finite ¥,. However, this contour is not unique
and we may have different finite no-boundary wave functions for different contours [78]. This is
a serious problem of the no-boundary proposal; it may not give a unique wave function of the
universe. This motivated some authors to add some new restrictions to the no-boundary proposal
[79]. We will not enter on these details here,

As general relativity ia a theory with constrainta, the path integral in equation {5.158] muat
be made with care in order to not integrate over spurious degrees of freedom, like in any other
gauge field theory. For details on this point see Refs. {30, 43, 44].

In the semi-classical appraximation, the dominant contributions to the path integral {5.158)
will come from the four-geometries and matter fields which are solutions of the Euclidean equations
of motions because they minimire the Euclidean action:

#5Thu(=), #2), Bl « T exp{— 12 lnmi=), 60} | (8.159)

where the sumn is over Buclidean classical solutions.

Let us impose the no-boundary boundary condition to the solutions of the minisuperspace
mode! we have presented in the last section to see how it works. The no-boundary semi-classical
wave function can be calculated by evaluating the Euclidean action that comes from (4.118) ( with
e=-1)

e fuh(§ -

in the classical solutions of the Euclidean field equations

(y+n=0
() =0

%+:=0

At the boundary B, where the wave function is evaluated, we have y(1) = § and 2(1) = .
At the ‘south pole’, labelled by 7 = 0, the no-boundary proposal says that A/? = 0. This implies
that a(0) = y(0) = G¢. Also, it requires regularity of the fields there: |$(0)| < oo which implies
that ={0) = a{0)[1— o4*(0}] = 0. With these boundary conditions, the solutions of the Euclidean
equations of motion are: y = §t*,z == & and N = +i/Zy. These solutions can be substituted
into the action yielding J; = +i%+/2). The semi-classical no-boundary solution is given by:

¥np o exp(—1y) + exp(—1-) ox cos(zy/2y) (5.160)
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This is a wave function of the type ¥, with 5 given by equation (4.141) with & = 7 =< 0.
Therefore, by equation (4.144), the no-boundary wave-function predicta Minkowaki spacetime.

This resuft is in accordance with the conjecture that the no-boundary wave function is a
kind of vacuum wave function in the sense that it represents a state with maximal symmetry.
In fact, Minkowski spacetime is the solution with maximum number of Killing vectors in our
minisuperspace model.

For the £ = +1 case the solution is

¥na = exp(zy/2y) (5.161)

It is not an oscilatory wave function. It can be viewed as generating solutions of equation
(4.120) with £ = 0, which are not allowed for £ = +1. In general, oscilatory wave functions are
related to classical solutions while non-oscilatory wave functions are related to classical forbidden
regions, like tunneling effects, exactly like in ordinary quanium mechanics.

The no-boundary boundary condition, as other boundary conditions, has been applied to
many different minisuperspace examples as atiempis to answer old cosmological questions, as
described in the introduction.

For minisuperspaces of homogeneous but anisotropic universes, like Bianchi I and Bianchi IX
models, it was shown that the no-boundary wave function has a peak where the minisupersapce
coordinates describe isotropic coamological solutions [B1].

In the case of & homogeneous minimally coupled scalar field, some authors have studied if
the no-boundary and tunneling solutions yield the initial conditions for having inflation. As
explained in the lectures of Branderberger, inflation can explain the observed isotropy of the
universe. However, not all initial conditions give rise to inflation; depending on the initial value
of the scalar field, the universe may recollapse too early or we may not have enough inflation to
isotropige it. In Ref. [82] this issue is discussed comprehensively, and it is shown that the tunneling
solution yields good inflation while the no-boundary does not {although some controversy on this
result exists in the literature).

The problem of structure formation can also be discussed in the light of quantum cosmology
|82, 83]. Small inhomogeneous perturbations are added to the homogeneous and isotropic metric
and scalar field, enlarging the minisuperspace model:

hi(x,8) = @(8)(y; + ei(=,1))

¥z, t) = Ht)+5é(z,1)

N(z,t) = MNo(t)+5N(2,1)

SNi(z,t) . (5.162)

where {; is the metric on the unit three sphere.

These inhomogeneous perturbationa are expanded in three-sphere harmonics QF, , as for ex-
ample the scalar field:

if(=z,t) = _Ii':_f-u--(t)Q?..(z) (5.163)
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The new minisuperspace action is:
S(ywaﬁ) = SD(Nm a, ¢) + S’(NUI “t&! JNI N'tf:u) (5'1“)

where f%_ represents all expansion coefficients of the perturbations.

We can proceed with the quantization of this enlarged minisuperspace in the usual way (see
details in the Refs. {82, 83]). In the seni-classical approximation, we can obfain & Schrodinger
equation for a wave function describing the quantum evolution of the perturbations in a fixed
curved spacetime, following the same steps we have taken in order to obtain equation (3.88) in
section 3. Thia wave function can be obtained from the original solution of the Wheeler-DeWitt
equation, as in equations (3.82), (3.86) and (3.87). If a unique solution of the Wheeler-DeWitt
equation ia selected by some boundary condition (no-boundary, tunneling, etc), the quantum
state of primordial perturbations can be known and its evolution uniquely determined. After, it
can be compared with observations as explained in Refs. [84, 85].

5.2) Decoherence

Let us now return to the problem of finding peaks in the Wigner function, as discussed in the
last section. As Berry have shown, Wigner functions of semi-classical wave functions do not have,
in general, a unique peak. Also, it may sometimes happen that the semi-classical wave funciion
be a superposition of many WKB wave functions, like in equation {5.160), and the corresponding
Wigner function present quantum interference {which is not the case of the particular precedent
case for the questions we were trying to answer).

Usually, quantum interference can be eraised by the phenomenon of decoherence. It happens
when the degrees of freedom under study are in interaction with a macroscopic environment.
When all the irrelevant degrees of freedom of the environment are traced out, we obtain a reduced
density matrix, like in equation (2.37) of section 2. As we have pointed out in that section,
the term respensible for quantum interference vanishes for almoet every macroacopic system
{25, 26, 27, 28, 29].

The natural idea is to apply the concept of decoherence to quantum cosmology. But what
i the ‘environment’ of the universe? Cur observations of the universe are coarse. Therefore,
we could think the ‘environment’ of the universe as compoded of fine degrees of freedom which
are not observed. In Ref. [86], a minisuperspace example of this idea has boen developped. It
was also shown in this paper that the Wigner function of the reduced deasity matrix obtained
by tracing out the unobserved degrees of freedom has only one peak. They took & very simple
minisuperspace model where the unigue degree of freedom was the acale factor. The theory is
general relativity with a cosmological constant. The Wheeler-DeWitt equation is:

[4$ —14 Agj¥{g})=0 (5.165)

where ¢ = o?, @ being the scale factor, and A is the cosmological constant. The no-boundary
wave function is ¥yg = -—lAl[‘;—;jA,,[] The semi-classical Wigner function of the no-boundary
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wave function is proportional to a sinus function and has many peaks. After, they introduced
inhomogenecus perturbations, like in equation (5.162). They calculated the modified density
matrix, integrated over the inhomogeneous degrees of freedom to obtain the reduced demsity
matrix, and calculated the semi-classical Wigner function of this reduced density matrix. The
result was that, depending on the degress of freedom that were traced out, the new Wigner
function has only one peak over the classical trajectories,

Therefore, decoherence is not anly responsible for the ersising of quantum interference but
also for the construction of classical correlations between phase space variables.

There are many questions still to be answered. The calculations of Ref. [86] indicate that the
tracing out of unobserved degress of freedom is not arbitrary: if we trace out too many degrees
of freedom, we end with no peak; if we trace out only a few, we end with a lot of peaks. Until
now, there is no physical reason that can guide us with the good choice. This problem leads to
another one: what is a good peak? The Dirac delta peaks of Ref. [62] are undoubtly good peaks
but they are not correct, in general, as we have seen. It in unavoidable to deal with finite peaks.
Therefore, the question of how big must be & peak in order to yield exact predictions is pertinent,
and without a general and satisfying answer. This motivates us to the next section, where we
will present some other interpretations of quantum mechanics which may be more apropriate o
quantum cosmalogy.

8. The ontological and consistent histories interpretations of quan-
tum mechanics

What we call the conmistent histories interpretation is the one developped by Griffiths, Omnés,
Hartle and Gell-Mann [87, 21, 88, 89], and the ontological interpretation is the onc developped
basically by David Bohm [30, 31].

6.1) The consistent histories interpretation

The consistent histories interpretation is an improvement of the idea behind the many-worlds
interpretation. Quantum mechanics is not viewed as » theory of many worlds but as a theory of
many histories. It was developed by Griffithe and Omnés in order to get a consistent interpretation
of quantum mechanics without the problems mentioned in section 2.

The first basic assumption of this scheme is that, according to Omnés (21}, ‘cvery physical
system, whether an atom or a star, is assumed to be described by & universal kind of mechanics,
which is quantum mechanics’. There are two immediate important consequences of this assump-
tion: first that the theory deals with individual systems (there is no sense in dealing with an
ensemble of planets Mars in order to study this planet), and second that classical mechanics must
be derived from quantum mechanics in the situations where it is a good approximation. Here,
claasical mechanics means not only classical dynamics { Newton’s laws, in the non-relativistic case)
but also classical logic (common sense}, determinism, and everything characteristic of the classical
world. Therefore, the classical world must be derived from the quantum world.
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Evidently, this kind of interpretation is better suited to quantum cosmology than the Copen-
haguen one. That is why Hartle and Geli-Mann have developed an analogous framework in order
to apply it to quantum cosmology.

In the history interpretation, probabilities'* are not assigned to events as in usual quantum
mechanics but to whole histories. However, as we know, we cannot assign probabilities to every
history in quantum mechanics. The interference figure obtained from the two slit experiment is
an evidence of this fact. Hence, we must establish what are the conditions on families of histories
in order to be possible to assign probabilities to all members of such families. Once we obtain
these conditions, we will have the poasibility of saying, for instance, that a history of the universe
with inflation is more probable than another one without inflation, without mentioning observers
or measurements. Let us give more details on how this interpretation works.

A history of an isolated physical system in a succession of properties of this system occurring
at different times. An example of & property of a system is the sentence ‘the eigenvalue of the
observable B is in the set D'. To ecach property is associsted a projector operator. In the
above example, it would be the projector P onto the subspace of the Hilbert space containing all
eigenvectors with eigenvalues in the act D. Another way to say the above property is ‘the value
of Pis 1%

The probability of a property, designed by its projector P, must satisfy the following condi-
tions:

0< p(P) <1 (6.166)
p(I) = 1 (6.167)
p(P+P} = p(P)+p(P) (6.168)

where P and P’ are projectors into disjoint sets [} and I¥.

There is a theorem due to Gleason [90], which shows that there exists a trace-class (with unit
trace} positive operator g (the density operator), where a p(P) satisfying the above conditions
can be written as (compare with equation (2.27)):

#(P) = Tx(pP} (6.169)

The probability of a history can also be obtained from some logical conditions (for details, see
Ref. [21]). The unique'® probability is given by:

P = Te{Pultn)... Palte)... Pi{t1)p Py (tr)..-. Palda)... Pu(tn)} (6.170)

where p iz the density matrix of the initial state of the system. One of the projectors Fo(t,) can
be omitted due to the cyclic property of the trace and the fact that P,(t.) iz a projector. Note

“Hm,Mhtyhmu.hmdmu,ammmdobmwmmmmymmmid
requircments, as will see later an. Its connection with the relative frequences of t data is thing
to be established when a theory of measurements in formulated, It is argued in Ref. [21]thntthmmmme
wob.buhtmwhmhcmmtbehﬂedbymemremmhwtulethmmothmwh:hmyhaumempmnlm

¥ The uniq nnnly,_ 'ﬁwL tories with two instants of time or histories where the projector refers
wither to position or
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that for n = 1 this probability reduces to equation {6.169). Also, if ¢ represents a pure state,
p = |¥><¥|, this probability reduces to the reasonable equation:

p = |Palta) P(ta)-- Pu(8 )| > | (8.171)

I we have more then one history, copatituting what will be calied a family of histoties, then
the additivity condition on probabilities must be checked, Let us make some definitions.

Two histories & and A’ are said to be disjoint if Pj(2a)Pu(¢s) = 0 for some k. The union
of two histories is defined if the histories have Pf(t;) = P(t;) for all i except for one i = &
where PI(t)Fi(ts) = 0 (shey must be disjoint}). The union is the history given by the sequence
{Pulta) Pt Po(1) + Filta).. Pulta)}

A consistent family of histories is one where each probability of each possible union of two
disjoint histories is the sum of the probabilities of each disjoint history:

p(k+4) =p(R) +p(¥) (6.172)

Therefore, in & consistent family of histories, & probability can be assigned to each history
of the family. Equation (6.172) implies some consistency conditiona. Let us examine a simple
example. Take a family constituted of two histories and two instants of time. The history b is
{Bi(ty), Pa(t2)} and B is {P(t1), Pa(ts)}, with Pi(t:)P{(t;) = 0. The initial state in given by
the density matrix p. Then we have:

p(h+A") Te{ Py(ta)(Pi(t1) + Pi{t1))p(Fults) + Pi(0. 1)}

p(R}+p(F)+
Te{Pa(t2)P}(t1)pPi(t1)} + Te{Pa(ta) Pi(t:)pPi(t: )} (6.173)

+

Hence, probabilities can be assigned to this family of histories if:
Te{ Py(ta)Pi(1)pPa(t1)} + Te{ Palta) Pu(tr)pPs (0]} = © {6.174)
Using that the projectors are hermitean operators, equation {6.174} is equivalent to:
ReTr{Pa(ta) Pa(t)aPi(t2)} = 0 (6.175)
This is the consistency condition for this family of histories.
To illustrate the meaning of equation {6.175), let us apply it to a concrete example. Consider
a spin } particle. The initial state is given by the property #.ng = +1 where no is some unit
length vector and o are the Pauli matrices. At times ¢; and t3, the possible properties are given

by om; = +1, j =1 or 2, n; and n, being two others unit vectors. It can be shown that the
consistency conditions derived from this family of histories imply that:

(RoAm){n Ang)=10 ) (6.176)
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where A is the vector product.

i) Take no = =, n; = y and n; = z. In this case, condition {6.176) is satisfied. A history A
is: the particle has apin S, = M at t =4y, S, =}h at t =t and S, =18 at t =1, A history
k' ia: the particle kas spin 5, --h at £ =4, S,:—lﬁ att=14 andS N st t=1;. The
union &+ A’ is: theparhclehusplns = 15 at t =iy and 5, = 1& ati=1;. Themtermedute
step at time ¢; is omited because the sum of the projectors a.lsocu.ted with this step in A and &’
is the identity operator. In other words, the statement that the y component of the spin of the
particle at time #; ia either %ﬁ or —3k ie a trivial statement which can be omited.

It can be easily verified that the probability of A + 4 is the sum of the probabilities of A and
&', Indeed:

p(h+4')
1

p(h) +p(¥)
11 11

2 2°2°2°2

ii} Take ng =z, ny = y and n; = 2. In this case, condition (6.176) is not satisfied. A history
b is: the particle has spin S, = {hi st t =&y, S, =Miat t=f and S, = (A at t =#;. A
history A’ is: thepartnclehu.pms.=lﬁatt-.t.,,s,=—lu.tt t and §, = ik at
t =iy, The union A+ A’ is: thepnrt:clehuspm.‘j'._—kntt—tomdS =1ha.tt—t, The
intermediate step at time ¢, is omited for the same reason as before.

It can be eanily verified that the probability of s + &' iz noi the sum of the probabilities of &
and &'.

p(h+4) # p(A)+r(K)
1 # !’. .].'.+.]L l
2°2 272

i) Take ng = 2, ny =zmdng=:.Inthlcm,oomd.ﬁm(ﬁl?ﬁ)msatlsﬁed A history &
is: the particle has spin S, = jA at t =4, S, =ih at : =, and S, = 15 at t = ¢#,. A history

k' is: the particle has spin 5. —%att-to S._—-!u.tt_n andS =ihatt=1. The
union &+ N is: thepnrt:clehulpm Se= 15 ntt—toands ——lhatt—tg

The probability of A + &’ is the sum of the probabilities of 4 and A’.
p(A+K) # p(h)+p(h')
1 1 1

E = 1.§+0.‘2—

For more complicate families of histories, the necessary and sufficient consistency conditions
are more involved [21]. That is why Hartle and Gell-Mann [88] prefer to use & simpler sufficient,
but nol necessary, condition. They defined the ‘decoherence functional’ as;

D({PeHPa}) = Te{ P (ta)... Py (41)0Ph, (t1). P (ta)} - (6177)

{the indices &, are to emphasise that we may have many projectors at each instant te)-
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Their sufficient condition i
D({Pc'}{Pu}) =0; oy # oy (6178}

This implies that the decoherence functional can be written as:

D({Pur HPa}) = bafou - Baten 2 (b = {Fu}) (6.179)
for each history A = {P,} of the given family of histories.

Families of fine grained histories (for instance, precise values of the position operator at every
instant of time) are not consistent. Usually we have to deal with cosrse grained histories {for
instance, values of the position operator belonging to some set of values at some instants of time).
These coarse grained histories may satisfy, at least approximately, equation (6.178) (recall that
our obaervations in cosmalogy are very coarse grained). In this case, we may assign probabilities

“to them. There must exiat some families of coarse grained histories which satisfy equation (6.178)
with no finer-grained family which satisfies it. These families are called maximal scts. The time
evolution contained in some histories belonging to consistent families may be approximately equal
to the time evolution obtained from the classical equations of motion. These are quasi-classical
histories. They involve quasi-clastical projectors associated with collective observables (e.g., the
center of mass pusition of & collection of atoms).

In quantum cosmology, the goal would be to find collective observables (related with con-
crete observations), and their connections with fundamental quantum gravity operators, identify
consistent family of histories, impose as initial condition some solution of the Wheeler-DeWitt
equation obtained from some anitable boundary conditions as described in the precedent sec-
tion, and finally calculate probabilities of histories. This ia subject of intense rescarch nowadays
[91, 92, 93, 94, 95].

It should be emphasized that there are some important differences in the formulations of
the history interpretation. The first we have already mentioned: while Hartle and Gell-Mann
work with the simpler sufficient conditions {6.178), Omnés works with more complicate sufficient
and necessary conditions. [t means that Hartle and Gell-Mann loose some consistent families of
histories in the name of simplicity.

Second, in the original formulation of Griffiths, the initial and final states in the histories
are fixed while in the Omnés formulation the final state is open. This implies that the Griffiths
formulation is time reversal while the Cmunés one it not. Omnés argues that with his definition of
probability, he can define a consistent logic in consintent families of hittories while with Griffiths
definition this is not possible. This is undoubtly & very persussive argument.

Let us now introduce another interpretation, the ontological interpretation of quantum me-
chanics.

6.2) The ontological interpretation

The ontological interpretation of quantum mechanics works as follows: take the Schrodinger
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equation in the coordinate representation with the hamiltonian B = % + Vi(a)

S BYE v’ + V(=))¥(=,1) (6.180)

Write 9 = Rexp(i5/K) and substitute in (6.180). We obtain the following equations:

S | (VS) A VR
Bt + m +¥ - 1 =0 {6.181)
8: v. (R’E) =0 ' (6.152)

The ontological interpretation, based on these two equations, is the following [30}:
i) The quantum particles follow trajectories z(t}, independent of obaer

ii) The particles are never separated from a quantum field ¥ which acts on them, which
satisfies the Schrédinger equation (6.180).

iii} The momentum of the particle s p = VS,

iv) Equation (6.181) is & Hamilton-Jacobi type equation for a particle submited to an external
potential which is the classical potential plus a new guantum potential

K7 VR

Hence, the particle trajectory z(t) satisfies the equation of motion

mes = -VV - Vg (6.184)

¥) In a statistical ensemble of particles in the same quantum field ¥, the probability density
is P = R Equation (6.182) guarantees its conservation on time.

Let us make some comments:

a) Even in the regions where ¥ is very small, the quanium potential can be very high, as we
can see from equation (6.183). It depends cnly on the form of ¥, not on its absolute value. Thia
fact brings home the non-local character of the quantum potential. This is very important because
the Bell’s inequalities together with Aspect’s experiments show that, in general, a quantum theory
must be either non-local or non-ontological. As Bohm's interpretation is ontological, it must be
non-local, as it is. The quantum potential is responsible for the quantum effects. For instance,
in the two-alit experiment, the gradient of the quantum potential, the quantum force, is infinite
exactly on the points of destructive interference; particles cannot be there.
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b) An image proposed by Bohm and Hiley i that the wave function ¥ acts like a radio wave
emited to an automatic pilot in a ship and guide it. It has not the energy to pull the ship but it
gives the information for its engine, in our case the quantum potential, to do so.

c) It is not always true that we can write the probabilty density of an statistical ensemble
of quantum particles as P = B?. The function R is more important to construct the quantum
potential then to assign probilities. Probabilities are not fundamental in this interpretation.

d} The classical limit is very simple: we have only to find the conditions for having @ = 0.

) As we have discussed in s=ction 2, in a measurement the wave function is a superposition
of non-overlaping wave functions, as we can see from equation (2.34) and equation (2.35). The
particle will enter in only one region and it will be influenced by the quantum potential obtained
from the non-zero wave function of this region only.

For quantum fields, we can apply a similar reasoning. As an example, take the Schrddinger
equation for a quantum scalar field:

B - ol W+ (VP + VIR (6.185)
Writing again ¢ = Rexp(iS/h), we obtain:

o+ [ P+ (T + VI + Q=0 (6.196)

L / PRI (6.187)
6t i b¢ :

where @f¢,t] = —A*% | d’z‘—:{- is the corresponding quantum potential.

A detailed analysis of the ontological interpretation of quantum field theory is given in Ref.
[96) for the case of quantum electrodynamics.

The ontological interpretation of canonical quantum gravity is obtained in an analogous way.
Substitution of ¥ = Rexp{i§/4) into the Wheeler-DeWitt equation (3.73) yields the two equa-
tions (for simplicity we stay in pure gravity):

1 55 88

5Cum— Prghe T RARCUh) + 82 Q(hy) = 0 (6.188)
where the quantum potential is given by:

Q=K 1 e Sﬁf:fhu (6.190)
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As before, we set:

&5

0 = —A/4(Ky - hiK) =

(6.191)

Hence, as K; is essentially the time derivative of A;;, equation (6.191} gives the time evolution
of h;, which will be different from the time evolution of classical general relativity due to the
presence of the quantum potential in equation (6.188). As we see, there is no issue of time. The
notion of spacetime is meaningful in this interpretation, exactly like the notion of trajeciory is
meaningful in particle quantum mechanics following this interpretation.

Some interesting worka have been done in ontological quantum cosmology. In Ref. [87], it
is shown, using a minisuperspace model, that the quantum potential cancels the cosmological
constant for real wave functions (which iz the case of the no-boundary one), leading to & null
effactive cosmological constant. In Ref. [98] it is shown, in a straightforward way, bow {o obtain
semi-classical quantum cosmology, in the light of this interpretation.

7. Conclusion

In these lectures, we have iried to outline the main problems, goals, and achievements of quantum
cosmology.

1) The first problem is to formulate a consisient theory of quantum gravity. In our opinion,
perturbative methods are inadequate to quantize gravity. We have to focus our attention fo a
non-perturbative approach, which can be applied to some general theory which contains general
relativity, like superstring theory [99], or simply to general relativity itself. We have adopted
this laet attitude, for simplicity, applied the Dirac quantization procedure, and arrived at the the
fundamental canonical quantum gravity equation: the Wheeler-DeWitt equation {3.81), which is
a complicate equation and very difficult to solve.

a) One attempt to solve this problem is to work with & different set of canonical variables:
the Ashtekar variables [100, 101). In these variables, the hamiltonian constraints of general
relativity are greatly simplified, and also the corresponding Wheeler-DeWitt equation. They
become similar to the Yang-Mills equations. Therefore, many technics developed for so many years
in the framework of Yang-Mills theory, can be applied to canonital quantum gravity in Ashtekar
variables. In particular, the introduction of loop-space variables, inspired in the Yang-Mills

" Wilson loops, has presented some interesting non-perturbative results [102, 103]. The program
of canonical quantisation of general relativity in the Ashtekar variables is the subject of intense
research nowadays. It has many unresolved questions and problems of physical interpretation,
but it surely deserves the atention and work of researchers interested in quantum gravity.

b) As we have mentioned in section 3, due to the Klein-Gordon nature of the Wheeler-DeWitt
equation, it has been proposed that we should quantize the wave functions ¥ which are solutions
of the Wheeler-DeWitt equation. It would be like a third quantization of gravity. This is a theory
where universes, with all their internal characteristic features {total charge, coupling constante,
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etc} can be spontaneously created. This approach is connected with euclidean quantum grav-
ity, where topology change in described in terms of instantons {solutions of the euclidean field
equations, like in quantum field theory): disconnected universes (baby universes) are created by
quantum fluctuations of topology [77]. In Refs. [104, 108] this approach is studied and the isaue
of the determination of the values of coupling conatants is discussed.

2) In section 2 we have shown that the Copenhaguen interpretation cannot be applied to
quantum cosmology.

a) One proposal of interpretation is the one inspired in the many-worldss interpretation of
quantum mechanics which says that a definite prediction can be made if the wave function has
one peak. The problems of this interpretation are mainly two. First, it is not easy to find a peak
in solutions of the Wheeler-DeWitt equation. One attempt to solve this problem is to study the
corresponding Wigner functions of semi-classical wave functions but even them have not a single
peak. Nevertheless, decoherence effects may yield a Wigner function with a single peak, but with
a finite height. The natural question is: what height must have a peak in order to be considered
as a prediction? Furthermore, decoherence comes from tracing out irrelevant degrees of freedom.
Wkhat are the irrelevant degrees of freedom in quantum cosmology?

b} A second proposal ia the consistent histories interpretstion. In this interpretation, the
conditions for assigning probabilities to histories are established without mentioning ohservers or
measurements.

A common feature of these two interpretations is the important role of decoherence in both
of them. Decoherence is fundamental to obtain classical spacetime in a theory where there is no
classical domain 'a priori’.

¢} The third interpretation presented in these lectures is fundamentally different from the first
two. It is an ontological interpretation. In this approach, the notion of trajectories of quantum
particles is meaningful. Analogously, the notion of spacetime is meaningful in quantum gravity
and hence the notion of time. The classical limit is very esay to obiain; we have just to set the
conditions for having the quantum potential equal to zero. The problem with this interpretation
is the difficulty to accomodate the notion of spin, which cannot be described with classical images
[108].

3) In order to obtain predictions from quantum cosmology, we need boundary conditions to the
Wheeler-DeWitt equation which select only one of its solutions. In section 5, we have presented
one of the proposed boundary conditions, the no-boundary one. The no-boundary wave function
iz analogous to a ground state wave function. We have shown, with a simple minisuperspace
example, how & no-boundary wave function yields definite predictions. However, in general, the
no-boundary boundary condition, does not select a unique wave function. It depends on the
complex contour where we perform the path integral. Hence, it needs more apecifications in order
1o yield a unique solution.

We have also described how quantum cosmology can be relevant in explaining structure for-
mation. This is & domain where we can really test if quantum coamology ideas may yield some
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physical testable consequences {107].1¢

Summarising, a lot of work has been made and is atill needed in domains like non-perturbative
string theory, Ashtekar variables, baby universes, decoherence, consistent histories interpretation,
Wigner functions, boundary conditions and the problem of structure formation. Not so much
attention has been devoted, however, to the ontological interpretation which seema to be the best
adapted to quantum coemology, although with its problem to accomodate spin. We think some
more research is needed in this area.

1980ms posibie wects of quantom gravity in quentum field theory bave also been wtudicd [108].
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