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Chapter 48

Introduction. The Current State
of the Universe

Current classical cosmology succesfully describes the main features of the universe,
but uses ford that some specific initial conditions. In the framework of classical
cosmology these conditions do not have thier own reasonable explanation. They
are just selected in such way that the theoretical predictions be compatible with
the actual observations. A more deeper understanding of why the universe has
these and not the other properties can be provided by quantum cosmology. The
most important unsolved issue is the nature of the cosmological singularity whose
existence follows from classical general relativity. The phenomenon of singularity is
probably the most compelling reason for replacing classical cosmology with quantum
one.

Let us recall some properties of the actual world which seem to have their
origin in the very early universe (see standard text books [1] [2] [3] [4]).

The distribution of galaxies in space as well as the distribution of their
red shifts indicate that at largest scales the universe is homogeneous and isottropic.
The most convincing manifestation of the large scale homogeneity and isotropy
of the universe is the absence of the angular variations of the temperature of the
microwave background radiation: AT/T < .10~*. All the observational data pont
to the conclusion that in the first approximation the overall structure and dynamics
of the universe can be described by the Friedmann (or Friedmann-Robertson-Walker,
FRW) line element,
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ds? = 2 dt? — a*(t)dI*. (1)

It is known that the spatial part if the metric 1 di?, can correspond to the
closed (k = +1), open (k = —1), or flat (k = 0) 3-dimensional spaces. The actual
sign of the space curvature depends on the ratio = p./p. of the mean matter
density p,. to the critical density p = z2= H? where H is the Hubble parameter H(t),
H(t) = a/a. The majority of the avaiable astronomical data favour the value { < 1
which implies that ¥ = —1. However the observations can not presently exclude
neither k = 0 nor k¥ = +1. In any case the current value of the parameter {} seems
to be very close to the unity.

Although the overall structure of the universe is homogeneous and isotropic,
it is obviously -not the case at scales characteristic of galaxies and their clusters. It
is believed that the smaller scale inhomogeneties were formed as a result of growth
of small initial perturbations. In order to produce the observed inhomogenieties the
initial perturbations must have the specific amplitude and specific spectrum. There
are some theoretical and observational arguments in support of the so-called “flat
”Harrison-Zeldovich spectrum [5] [6] of the initial fluctuations.

The dynamical characteristics of the averaged distribution of matter,
the growth and formation of the smaller scale inhomogeneities, the abundances
of various chemical elements, as well as other features of the actual universe are
successfully brought together by the “standard "classical cosmological theory. The
trouble is, however, that the “standard "theory postulates certain properties of the
universe rather than derives them from more fundamental principles. For instance,
the observational fact of the angular uniformity of the temperature of the microwave
background radiation over the sky does not have another rational explanation except
being a consequence of the postulated, everlasting homogeneity and isotropy. A more

natural explanation to a set of observational fact is provided by the inflationary
hypothesis [7] {8] [9]-

According to the inflationary hypothesis the spatial volume of the uni-
verse confined to the current Hubble distance Iy = ¢/H =~ 10%c¢m or, possibly,
even much larger volume has developed from a small region which was causally con-
nected in the very distant past. If the inflationary stage in the evolution of the very
early universe did really take place then the large scale homogeneity and isotropy
as well as the closeness of {} to the unity can be explained as the consequences of
the inflationary expansion.
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The most popular model for the inflationary stage of expansion is pro-
vided by the De-Sitter solution. Originally it was derived as a solution to the vacuum
Einstein equations with a constant cosmological A-term. However, it can also be
treated as a solution to the Einstein equations with matter source satisfying the
effective equation of state p = —e. The De-Sitter solution describes a space-time
with constant 4-curvature. This space-time is a symmetric as Minkowski space-time,
i.e. it admits a 10-parameter group of motion. The line element of the De-Sitter
space-time has the form (see, for example, [10]):

ds? = * dt? — a¥(t) [dr® + sin’r (d6? + sin®0 dy?)] , )

where a(t) = rocosh(ct/ro), and ro = const. It is known that in the De-Sitter space-
time one can also introduce the frames of reference with flat or open (hyperbolic)
space sections. These coordinate systems do not cover the whole of De-Sitter space-
time. The often uséd is the flat 3-space representation:

ds? = ¢ dt? — a*(t) (do® + dy? + d*) , 3)

where a(t) = ezp(Hot), and Hy = const. The constant Hy plays a role of the Hubble
constant at the De-Sitter stage of expansion. The scale factor a(t) of the line element
3 approaches the behavior a(t) ~ exp(Hot) very quickly during several characteristic
time intervals t = ro/c.

In order to see the advantages of the inflationary expansion let us assume
that at ¢ = 0 the distance between two idealized physical objects was of order of
a few Planckian scales, lp; = 107®cm. Then, it can be shown that the present
day the distance between these objects can be as large as the present day Hubble
distance Iy & 10%cm, if the duration of inflationary stage At was sufficiently long,
HyAt > .65. In this way a small causally connected region could have been grown
to the size of the presently observed universe.
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Chapter 49

A Complete Cosmological Theory

The inflationary stage help us to resolve several comological puzzies. However, the
origin of the inflationary stage needs to be explained. The question still remains what
kind of evolution dis the universe experience before the inflationary stage and how
did the universe itself originate. A frequently made assumption is that prior to the
De-Sitter stage there was a preceeding radiation-dominated era. This assumption
just postpones the answer to the above mentioned questions and inevitably returns
us to the problem of cosmological singularity and quantum gravity. As a cardinal
solution to the problem, it was suggested [11] [12] that the inflationary era was
preceeded by an essentially quantum-gravitational phenomenon called a spontaneous
birth of the universe. A theory capable of describing the classical stages of evolution
of the universe, as well as its quantum-gravitational origin was called a complete
cosmological theory. Let us present the main features of such a theory.

The desired evolution of the scale factor a(t) is shown in Fig. 1. Accord-
ing to this scenario the moment of appearance of the classical universe corresponded
to t = 0. After the moment of time the inflationary evolution started and was de-
scribed by eq.2. It is natural to expect that all the characteristic parameters of
the newly born universe were of order of the Planckian scales, i.e. the classical
space-time came into being near the limit of applicability of classical general rela-
tivity. The inflationary expansion is able to pickup such a micro-universe and to
increase its size up to the necessary value. The wave-lime joining the points a = 0
and a = lp; at Fig. 1 was meant to describe the essentially quantum-gravitational
process reminiscent of quantum tunneling or quantum decay, and resulted in the
nucleation of the universe in the state of the classical De-Sitter expansion. It is rea-
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sonable to suppose that at the beginning of classical evolution the deviations from
highly symmetric De-Sitter solution were negligibly small. Moreover, it seems to
be sufficient to take these deviations with the minimally possible amplitude, i.e. at
the level of quantum zero-point fluctuations. During the inflationary period these
fluctuations could have been amplified and produce the density perturbations and
gravitational waves. The density perturbations are needed to form the observed
inhomogeneities in the universe. Gravitational waves seem to be the only source
of impartial information about the inflationary epoch and the quantum brth of the
universe. These matters will be discussed in more detail below. We will see how the
notions introduced above will acquire more precise formulation.
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Chapter 50

An Overview of Quantum Effects
in Cosmology

From this brief exposition of a complete cosmological theory it is clear that quantum
effects and quantum concepts should play a decisive role in different context and
at different levels of approximation. It is useful ti give a short classification of the
areas of further discussion where the quantum notions will be dealt with. It is worth
emphasizing that below we will often use the common and powerful technique wich
is the splitting up of a given problem into the “background "and “perturbational
?parts.

We will start from the description of classical perturbations atr a classi-
cal background space-time. The physical meaning of such an effect as parametric
amplification of gravity-wave perturbations can be clearly seen already at this level
of approxiamation. The next level of approximation treats the perturbations as
the quantized fields interacting with the classical background geometry. At this
level of approximation we will discuss the graviton creation in the homogeneous and
isotropic universe. The main attention will be paid to the actual quantum state of
created gravitons. It will be shown that it is so-called squeezed quantum state.

At a still deeper level, the background geometry and matter fields are
also treated quantum-mechanically — this is the realm of quantum cosmology. The
main object of interest in quantum cosmology is the wave function of the universe
which, in general, describes all degrees of freedom at the equal footing. This level
of discussion is appropriate for tackling such issues as the beginning and the end
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of classical evolution as well as quantum birth of the universe. However, there is
no one unique wave function of the universe, there are many of them. All possible
wave functions constitute the whole space of the wave functions. One can introduce
the notion of a Wave Function given in the space of all possible wave functions.
In order words, a wave function of the universe becomes an operator acting on the
Wave Function describing the many universes system. This is the subject of the now
very popular so-called third-quantized theory. It is aimed at describing the multiple
production and annihilation of the baby-universes. This fascinating subject is still
very unclear and is beyond the scope of the present lectures. The reader is reffered
to the recent review and technical papers on the subject [13] [14] [15] [16] [17] [18].
In some sense the different theories listed from above to the bottom are various
approximation to the theories listed in the opposite direction.

Let us start from the classical theory of small perturbations superimposed
on a given background space-time.
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Chapter 51

Parametric (Superadiabatic)
Amplification of Classical
Gravitational Waves

We will consider classical weak gravitational waves. The main purpose is to study the
parametric (superadiabatic) amplification of gravitational waves [19]. We assume
that the space-time metric g,, can be presented in the form

Juv = 9,(3) + hys

where g‘(f,’) is the background metric:

ds* = a*(n) (dn’ — da* - dy* — dz?) (1)

and h,,-gravitational wave perturbations. The small correections k,, can be sim-
plified by using the avaiable gauge freedom. The remaining components can be
decomposed into the mode functions, so that for a given mode one has

bt = %#(fl)Gﬁ‘(z,y,Z)- )

In the case under discussion the eigenfunctions G¥ can be taken in the simplest form:

G¥ ~ ezp[ti(niz + nay + na2)),n? + n? 4 nl = n2
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The main equation to be solved is

1"+ p(n® — a"[a) =0, ®3)

=4

where ' = £- and 7 is the wave-number, the wave lenght being A\g = 2%2.

n

Equation 3 has the form of an equation for the oscillator with the varrying
frequency, that is we deal with a parametrically exited oscillator. The same eq. 3
can be regarded as the Schrodinger equation for a particle with energy n? and the
potential U(n) = a"/a.

In the regime n?/gglU(n)| the solutions to eq. 3 have the form p ~
et go that one has usual high-frequency waves with adiabatically diminishing
amplitude: A ~ Lsinny + 4. However, in the regime n? < |U(n)| there are two other
solutions to the second-order differential eq. 3 wich are y; ~ a and p2 ~ a f a~2dy.
A typical potential U(n) is shown in Fig. 2. The waves with n? 3> |U(n)| for all
values of 7 have adiabatically decreasing amplitude and are shown symbolically by
the wavy line above the potential in Fig. 2.

The waves satisfing n? < |U(n)| for some 5 encounter the potential
barrier and are governed by the solutions p; and gy in the under-barrier region.
It can be shown that the dominant solution is p;. Indeed, the amplitude of the
wave after its exit from under the potential barier depends, in general, on the initial
phase ¢ and on both solutions p; and p;. However, the averaging over the initial
phase ¢ pf the wave leads to a dominant contribution from ;. This means that
the adiabatic factor 1/a is cancelled out by u; ~ @ and, as a result, the physical
amplitude of the wave h, eq. 2, does not change in th region occupied by the barier,
instead of diminishing adiabatically . Thus, the actual final amplitude of the wave
hy is larger than it would have been, if the wave always behaved adiabatically, and
it is equal to the initial amplitude k;, by = h;. This is the essence of the mechanism
of the superadiabatic amplification of gravitational waves.

The amplification coefficient is just the ratio a(ny)/a(n:) where a(n;) is
the value of the scale factor at the moment of exit of the wave from under the
potential, and a(7;) is the value of the scale factor at the moment of entering the
under-barrier region. It is seen from Fig. 2 that different waves, that is the waves
with different wave numbers n, stay under the potential for different duration of
time. In other words, the amplification coefficient is determined by the form of the
potential and depends on n. This leads to the transformation of the initial spectrum
of the waves into the final one.
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Until now we were discussing the amplitude of classical waves. The initial
amplitudes and the spectrum of the waves could be arbitrary. Now, remaining at
the same classical level, we will discuss the amplification of the zero-point quantum
fluctuations. This means that the strictly quantum-mechanical notion of the vacuum
state for each mode we will replace with the classical waves with certain amplitudes
and spectrum. intuitively, the vacuum state corresponds to the idea of having 1/2 of
a quantum in each mode. The energy density of gravitational waves scales as ¢; ~
%/\ﬂ;-. For a given wavelenght A we want to have energy }hw in the volume ~ A3, In
this way we derive the vacuum amplitude of gravitational waves with the wavelenght
A, wich turns out to be equal to h()) = !fl Hence, the initial vacuum spectrum of
gravitational waves scales as h(n) ~ n. This is the spectrum to be transformed by
the interaction with an external gravitational field. The amplification process will
make the number of quanta in the mode much larger than 1/2.
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Chapter 52

Graviton Creation in an
Inflationary Universe

One can immediately apply the given considerations to the inflationary scenario. In
terms of 7-time the De-Sitter solution (3) has the scale factor a(n) ~ —1/5. (It is
convenient to have 7 negative and growing from —oo0.) We assume that the De-Sitter
stage ends at some n = 1, < 0 and goes over into the radiation-dominated stage
with a(n) ~ 5. Then the relevant potential U(n) has the form shown in Fig. 3 by a
solid line 1. A given wave with the wave number n enters the potential at some 7;,
when n? = a”/a, which leads to the entering condition 3; ~ 1. For different waves
this condition is satisfied at different a(7;). All the waves leave the potential roughly
at the same 77; which corresponds to the same scale factor a(ny). The amplification
coeflicient scales as
a(ng) _m _rm 1

a(m) ny ngp n

Multiplying the initial vacuum spectrum h;(n) ~ n by the amplification factor ~ 1

one obtains the final amplitude which is independent of n: hs(n) ~ n®.

To make this part of the discussion more precise let us consider a concrete
example. Let the scale factor at the inflationary stage be

1
a(”) = _.I_{—O;’
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where Hy is the Hubble constant at the De-Stter stage. At some 5 =1 < 0, a(n)
joins to the scale factor of the radiation dominated stage:

1
a(n) = ng(n —2m).

At the joining point 7 = m; the values of a(n) as well as their first n-derivatives
coincide. In the region —oo < 7 < 7 the general solution to eg. (6) has the form

= A [cos (nn + 6) + ni,, sin (nn + ¢)]

where A and ¢ are arbitrary constants. For +oo >n2m the general solution has
the form

pte = Bsin (nn + x), 0y

where B and x are to be determined from the joining conditions for p and p' at
n="n.

It is convenient to introduce the notation ny = z. Then it can be shown
from the joining conditions that

(8) - () e

3 1 2 .
+(l+;—2-+;)—-$—3 sin (z + ¢) cos(z + ¢).

2
It is seen that (%) depends on the initial phase ¢. however, the averaging over the
phase ¢ always leads to the superadiabatic amplification:

B 2 1/2 . 9 1 1/2
@) =(+a+7)

Since ¢ < 1 this quantity is much larger than the unity:

B\? 11
(X) M= > 1 )



Thus, at the left-hand side, i.e. for n — —o0, the solution is

h(n) = a™! A(n) cos(nn + ¢),

where A(n) ~ n. The amplitude of the last oscillation of the wave before entering
the under barrier region is h; & Z A(n). At the right-hand side, i.e. for n — +oo,
the solution is

h(n) = a”! B(n) sin (ng + x).

By substituting here the “typical ” value of B, derived from eq. (2), one obtains

h(n)% Honf A(n)

n— 2 it sin(ny + x) (3)

The amplitude of the first oscillation of the wave, immediately after leaving the
under barrier region, that is for n(y — 2m) ~ 1, is hy ~ 52 A(n). Hence, h; = hy
despite the huge increase of the scale factor.

We derived the typical soluiton (3) by using the condition that the initial
phase ¢ was randomly disturbed. However, from this simple example one can also see
that the cosmological expansion is the phase sensitive amplifier. This property is im-
portant for understanding of how the initial vacuum quantum state transforms into
the final squeezed quantum state. We will consider this statement more rigorously
later on. However, alredy now one can show that the two quadrature components
of the wave, that is two coefficients in front of sin nn and cos n7, respectively, be-
have differently. To see this, one can first find out the constant x from the joining
conditions and then rewrite the exact solution (1) in the form:

1 1
pe=A [——2 cosz sin(z+ @) + — oos¢—sin¢]
z z
+ A cosny [% sinz sin(z+¢)+% sin¢+cos¢]

= Ak, sinng+ Ak; cosny

For z < 1 one has k) = —3}; and k; = 2 41? sin ¢. After squaring and averaging over
the phase we obtain
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(B) ~ V2L

One can say that the variance of k; is much larger than the variance of k;. Even
more impressive is the difference between variances in the quadrature components
sin n#j and cos nf], where 7 = 7 — 2n;. In this case one has, correspondingly,

(7)) =2

Remember that before amplification, that is, for  — —oo, the variances were equal
and small:
2\1/2 7\1/2 1
®"=®)" =%

Let us return to the further evolution of the waves amplified during the
inflationary period. the waves with different directions of propagation, i.e. with
different wave vectors (n;, n,, n,), are statistically independent. By averaging over
statistical realizations one can derive the mean square amplitude of the amplified
fluctuations by the end of the inflationary era:

< h? >= /h(n)—

Since ks(n) does not depend on n, as was shown above, we arrive at the famous
Harrison-Zeldovich “flat ”. The equivalent definition of this spectrum is that every
wave starts to decrease its amplitude from one and the same numerical value, inde-
pendtly of n. Let us recall that the very notion of the amplitude of the wave assumes
that the wave has completed at least one cycle of oscillations. In other words, it
requires n(n — 271) ~ 1 in equation (3). In the course of the further evolution the
amplitude of the wave diminishes adiabatically.

In the time interval between the end of the inflationary era and the
present epoch the shorter waves experienced a larger number of oscillations than
the comparatively long waves. It means that the present day amplitude of the
shorter waves is smaller than the amplitude of the longer waves. Another way of
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saying is that the shorter waves crossed the temporary Hubble radius and started
to cool adiabatically earlier than the longer waves. While starting from the same
amplitude, the shorter waves decreased more.

Since at the radiation dominated stage the scale factor goes as a(n) ~ 5
the present-day amplitude of the waves scales as h(n) ~ L. It follows more formally
from equation (3) for n — +oo.

In terms of the present-ady fequency v, measured in Hz, the dependence
is h(v) ~ v~1. (This part of the spectrum was first discussed in [21].)

In the actual Universe the radiation-dominated epoch has changed to the
matter-dominted epoch some time ago. At the matter-dominated stage the effective
potential U(n) in eq. (3) is again non-vanishing. This potential is shown by a solid
line 2 in Figure 3. Short waves, i.e. the waves with sufficiently large n, do not interact
with this potential. However, the longer waves (their contemporary frequencies lie
in the interval 107'° Hz < .v < .107'® Hz [20]) did encounter this potential and
additionally transformed their spectrum. Since, at the matter-dominated stage, the
scale factor goes as a(n) ~ n?, the waves interacted with this potential have the
present-day spectrum in the form h(v) ~ v~2, (This part of the spectrum was first
discussed in Ref. [22], see also [23], [24], [25], [26], [27]).

We have considered the contemporary dependence of A(v) on v in dif-
ferent frequency bands. But we also need the numerical values of h(v). They can
be derived from the value of h attributed to the longest waves which are presently
within the Hubble radius, that is to the waves at frequency v ~ 10~!® Hz. These
waves did not diminish yet their amplitude adiabatically, so their amplitude is actu-
ally determined by its value at the end of inflation. According to the amplification
mechanism, this is the same numerical amplitude, as the one these waves had before
the beginning of the amplification process. By this logic we arrive at the number

lpt

by 0 () = 2,

where A is the wavelength equal to the Hubble distance at the De-Sitter stage:
lo = 3. In principle, the value of Hy could have been arbitrary. However, if Hy was
too la.rge such that

I
2510,
0
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then it would mean that the value of h (v ~ 107'® Hz), the amplitude of waves
at v &~ 10718 Hz, was larger than 107*. Since the variations of the microwave
background temperature, AT—T, caused by these waves, are essentially equal to A
(v ~ 107'® Hz), this would contradict the existing upper limits on 4. Thus, h
(v = 107'® Hz) <.107*. Similar considerations apply to 4% caused by waves with
frequencies v =~ 1071 Hz and to experimental limits on %—,T- in the corresponding an-
gular scales (several angular degrees). All that is summarized in Fig. 4. This figure
shows different theoretical predictions on stochastic gravitational waves, the existing

experimental limits and the expected levels of sensitivity from various techniques

[20], [28].
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Chapter 53

Quantum States of a Harmonic
Oscillator

Before going to quantum-mechanical treatment of the graviton creation, let us recall
some properties of quantum states of an ordinary harmonic oscillator of any nature
— mechanical, electromagnetic, etc. Especially, we will be interested in the notion
of squeezed quantum states.

Classical equations of motion for a harmonic oscillator, # +w? z = 0, can
be derived from the Lagrange function

_1 ., 1 2 2
=gmi—smu'sz
according to the rule:
oL) oL _,,
1] oz~

Associated with L is the Hamiltonian function

2
H= —I-’—+—”—l-w2z2,

2m 2

where
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Quantization is achieved by introducing the operators  and = —ih % and estab-
lishing the commutation relation by:

[£,p] = ih.

From # and p one can construct the creation and annihilation operators at and a:
1/2 _
= (m s B
at=(3)" (E-id)

a=(%)2 (5:+i;n%)

The oscillator can be described by the wave function (or state function) (z.t) which
satisfies the Schrédinger equation:

ma—'/’= :

ot v-

The ground (vacuum) quantum state |0 > is defined by the requirement a|0 >= 0.
The ground wave function has the form

o= ()" ] 5.

The n-quantum states are defined as the eigenstates of the N operator:

Nin>=nin>.



They are also eigenstates of H with eigenvalues hw (n + %),

Hin>=hwin>.

These states are produced by the action of the creation operator af on the vacuum
state:

[n >= [0>.

@
o

An important class of quantum states called the coherent states, is gen-
erated from the vacuum state |0 > by the action of the displacement operator:

D(a,a) = explaal — a* g,
where o is an arbitrary complex number. Symbolically one can write |CS >=

D [0 >. The squeezed states (for a review see [29]) are generated by the action of
the squeeze operator:

S(r,¢) =exp [-;- r (e73% q? — £¥¢ (01)2)] ,

where r and ¢, known as the squeeze factor and the squeeze angle, are real numbers:
0<r <oo,—F < ¢ < 3. Asqueezed state is generated by the action of the squeeze
operator on any coherent state and, in particular, on the vacuum state. Symbolically,
one can write |SS >= § D {0 >. If a harmonic oscillator is exposed to the time-
dependent interaction, then a squeezed state is produced by the Hamiltonian

H(t) =i (€ o~ € (a)?) &)

where ¢ is an arbitrary function of time.

The meaning of the word “squeezed” is related with the properties of

these states with respect to variances (or noise moments) AA of different operators
A:

AA=A-<A>.
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The squeezed wave functions are always Gaussian:

P(z) e 17 (2)

However, the variances of, say, variables £ and p are substantially differ-
ent. They can be presented in terms of the complex parameter 7,

TEn+ 17,
or real parameters r, ¢:

< (A2)?> = 2—1/—1- 3)
<(app> =L (1
< (AE AP >uym = —21;—1 (5)
<(Az)?> = % (cosh2r — sinh 2r cos 2¢) (6)
<(Ap)?> = % (cosh 2r + sinh 2r cos 24) )
<AEAp>um = —% sinh2r sin2¢ ®)

These variances sholud be compared with those for a coherent state,
which are always equal to each other and are minimally possible:

1
< (Az)r > =< (Ap) >= 3
<AL Ap >,m =0.

So, in a squeezed state, one component of the noise is always “squeezed” with respect
to another. In (z, p) plane the line of a constant total noise

= % [< (a2)* > + < (8p)* >

for the coherent states can be described by a circle, while this line is an ellipse for
the squeezed states (see Fig. 5).
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Chapter 54

Squeezed Quantum State of Relic
Gravitons. Theory and
Experimental Prospects.

Now we return to the cosmological graviton production!. The basic equation (3)
can be derived from the Lagrange function:

1M 5 1

L 2ay ia

MQ2 2’

where y = pfa, M = ¢, Q = n/a. The Hamiltonian H of the system constructed

in terms of coordinate § and momentum P = ——i;’—y operators has the form
. P
H=-L +-_MQ%?
2 + 2 ’

2 _ Hy. (1)

!Below we will mainly follow our recent paper [20]
2Here and below we set h = 1.
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Let us rewrite H in terms of creation b* and anhilitation b operators wich make the
Hamiltonian diagonal at any initial time 5 = n;:

i,+=(M"9")ll2 g—i-L_),
2 M,

. 1/2 -
b= ()" (7 5 &
H = fi(a) (% + b6*) + 3)

+ fa(a) (i)“2 + 32)
(4)

where f; = 2&(1+ “’;7:), fo= 1“%(5% ~ 1), w = MQ, w, = M. The functions f;
and f; depend on the scale factor a, that is they depend on time. The first term in
4 belongs to the quantum number conserving interactions, while the second term,
with the coeficient f;(a), have the form of non-conserving interaction Hamiltonian
1 producing squeezed quantum states.

We will seek for the solution to eq. (8) in the general form
¥ = Cn)e 20 (5)
For n = n; and under condition B(m) = jw; the wave function (5) describes the

vacuum state. At any subsequent moment of time # the wave function (5) describes
a squeezed quantum state. By substituing (5) into eq. (1) one obtains the egs.:

2
B =i (%Mﬂza - 2—}:7a) (6)
4
% = —iB;—l )

The prefactor C(n) is determined from eq. (7) B(n). As for eq. (6), it is equivalent
to eq. (6) if the replacement B(y) = —%a’%’i is made. Thus, by studying the
classical solutions to eq. (3) one can find B(7n) and, eventually, the squeeze and
phase parameters of the squeezed state at any subsequent time, including the present
epoch, n = .
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It can be shown from eq. (2, 5 and 5) thet B(n) is related with r(y) and
@(n) by the formula

wcoshr + e**sinhr
2 coshr — e sinhr

so that r = 1 Arccosh (%),Asin2¢ = L—ImB The mean value of quanta in

a given mode is equal to

_ (w—2ReB)’ + 4(ImB)’
<N>= 8wReB

so that one can also find out r from the relation r = Arcsinh(< N >)!/2.

A concrete cosmological model wich we already discussed above included
three successive stages of expansion: inflationary (i) governed by the effective cos-
mological constant A (A <.Ap;), radiation-dominated (e) governed by matter with
the equation of state p = ¢/3 and matter dominatted (m) governed by matter with
the equation of state p = 0. The scale factors at these three stages are:

a; = —(Hon) ™ (—o0 < 1 < my),
a.=c(n+61) (m <n<m),
am = ca(n + 82)* (1 2 ),

where it is assumed that a(n) and @’(y) are joined continuously at ; and 7;. From
the joining conditions we obtain, in particular, §; = —2, 8; = 5; — 4m. At the
three stages the basic solutions ¢ to eq. (3) have the form:

&= (1 - L) e,
nn

€e = e—in(n+0‘)’
Il .
= 1= ——— —m(n+02).
o= (- irm)
(8)

The general solution to eq. 3 is an arbitrary linear combination of £ and £*: p =
deltaW¢ + §@¢*, The continuous joining of solutions & = aé, + fi€l, € = azbm +
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B2¢€;, allows us to derive the relation:

& = (a2 + B1B)em + (12 + Pra3)Er,

where

1
ﬂl 21121712’
! 1 +ind/2
o = (1 t e 2n202) e
—_ 1 ~3ind/2
ﬂz = 2"202 € ’
0 =2(0, — 6,).

Now let us compute the value of the squeezing factor for a given mode
n: r(n). We will consider all waves shorter than the present Hubble radius: {n(no +
62) > 1.

By assumption, at the inflationary stage the initial quantum state for
gravitons was vacuum, that is B(m) = w(m)/2 = na®(m)/2 at 5 = n,. From this
assumption one can determine §; — the value of § = 6§(/6() at the inflationary
stage. One obtains §; = (1 4 2inr/b)'1ezp(2in17;,), that is §; is vanishingly small for
[nms| > 1 (for high frequency modes at 5 = ;). From the joining conditions one
derives the relationship between §; and §,,, i.e. § at i- and m- stages:

- (0183 + Braz) + b(araz + B 83)
™ (eiob + BiBa) + bi(cr P + Bray)

1t is sufficient to know only 6., in order to calculate r(n) for the present
epoch. Indeed, it can be shown that < N >= 676m(1 — 85,6,)7! and therefore:
r & Arsinh [65,6,(1 — 65,6,)71 72

Let us first find r(n) in the frequency range [nm| < 1,|nf] > 1, that
is for waves wich have been amplified during i-stage only. Their contemporary
frquencies are larger that 10~'®Hz. In this range one has:
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ay = —(2n’n}) ",
ﬂl & (2m27’f)—17
ag = ezp(inf/2),
B =0. (9)

Since sinhr & €7 /2 for r > 1 we obtain the following result:

r=ln a(n)
~l S (10)

where a, is the value of the scale factor at the time of exit of a given mode out of
the Hubble radius at i- stage and a, is the value of a at time of returning of the
mode to under the Hubble radius at e-stage. In orde to get the numerical values
of r(n) one first observes that r goes to zero for waves approaching [mn;| = 1 and
stays zero for |n7m;| > 1 that is for modes wich always remain in the vacuum state.
The contemporary frequency of waves corresponding to |nm| ~ 1 is v ~ 108Hz
(for lp ~ 10*1p;, where Iy is the Hubble radius at i-stage). For lower contemporary
frequencies the squeezing parameter r(n) increases according to eq. (10) and reaches
the value r ~ In10*8 ~ 10% at » ~ 10~ H 2.

Now let us turn to the region |nm|,|nf| < 1, that is to waves with
contemporary frequencies in the range 1078 Hz < v < 10~® Hz. These waves have
been amplified during both i- and m- stages. In this case we have o, 8; given in eq.
(9) and az, 8, in the form :

~_L+3_iﬂ~ L.}_.EL
O o T 40T T om0 T dnd

For r we have the result:

1 az(n)
=1
nlninl © O ay(n)

(11)

where a, is the same as in eq. (10) and a; correspons to time when the wave returns
under the Hubble radius at m- stage. The numerical value of r changes in accord
with eq. (11) from r = 102 at frequency v = 10~'® Hz uo to r ~ In 104810° ~ 1.210?
at v = 10718 H 2.
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Thus we see that the mode wave function 1, for Apym = %u(q)G’nlm(m)
describes a squeezed state with the squeezing coeficient r(n) independent of 1 and
m. The total ave function describing the relic gravitational wave background is the

. . e e,
product of the single-mode squeezed wave functions: ¥ = {n,l,m} Ynim.

The graviton statistics in the considered state generated by squeezong the
vacuum is super-Poissonian. In the possible gravitational wave experiments similar
to those well known in optics, the squeezed states discussed here would manifest
themselves in the form of graviton superbunching. Another way of observing the
predicted squeezing is the analysis of noises in sinwt and coswt components of the
gravitational-wave antenna output.

It is worth noting that similar statements about final squeezed quan-
tum sate apply also to other possible zero-point fluctuations amplified during the
inflationary stage.

Thus, we see that the relic gravitational waves should exist now in the
squeezed quantum state whose parameters can, in principle, be determined experi-
mentally.
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Chapter 55

Quantum Cosmology,
Minisuperspace Models and
Inflation

Until now we have been discussing the quantum fluctuations superimposed on a
given classical background spacetime. This is the right time now to start discussing
the quantization of the background geometry itself. In other words, we have reached
the domain of quantum cosmology.

In canonical quantum gravity the role of a generalized coordinate is
played by a 3-geometry g(®). The full set of 3-geometries forms a superspace, where
the wave function of the Universe is defined. If some matter fields are present as
well, the superspace includes the variables describing the values of the matter fields
on 3-geometries. The basic equation which governs the wave function of the Uni-
verse is known as the Wheeler-DeWitt (WD) equation. (For reviews of quantum
gravity and quantum cosmology, see, for example, [31], [32], [33], [34].)

A simplified case, which allows a detailed investigation, is provided by
minisuperspace models. In minisuperspace models one neglects all degrees of free-
dom except a few. Reasonably simple, though sufficiently representative, is a quan-
tum cosmological model describing a homogeneous isotropic universe filed with a
massive scalar field. In this case one has only two degrees of freedom (two minisu-
perspace variables) the scale factor a(t) and the scalar field ¢(t). Since the transition
to the notions of quantum gravity includes the integration of some quantitites such
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as the Hamiltonian function over the 3-volume, one normally considers closed 3-
geometries, k = +1, in order to avoid infinite expressions. The total energy of a
closed world is zero, that is why the analog of the Schrodinger equation takes the
form H+ = 0, which is the Wheeler-DeWitt equation.

For the case of a FRW universe w1th the scalar field ¢, V(¢) = } m? ¢?,
the Wheeler-DeWitt equation can be writtén as follows [35], [36]:

(% R m2¢2a4) ¥(a,4) =0 )

The factor p reflects some ambiguity in the choice of operator ordering. The possible
preferred choice pf p for the given model is p = 1.

First, we will show how classical Einstein equations of motion follow from
the quantum equation (1) in the quasi- classical limit. For simplicity we consider
the limit where the spatial curvature term, ka?, can be neglected. In this limit (and
for p = 1) eq. (1) reduces to

(G oo m- 5 mp+ o) vlah) =0 @)

In the quasi-clasical approximation, the wave function ¥(a, ¢) is of the
form

(A=1): v¥(a,9) = exp(1S(a,d) +i0(a,¢) + ...).

By using this representation the following equations can be derived from eq. (2):

as\* 1 (3S\' ..
@ e o
PSS 0S80 i8S i &S 2 8S do

"9’ 2920a Tada 95 795050 (®)

Eq. (3) is the Hamiltonian-Jacobi equation for the action S. Areal solution of (3),
which describes the classical dynamics of the model, can be represented in the form
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S(a,¢) = —a® f(9) (5)

An unimportant additive constant has been omitted here. From (3) it follows that
the function f(¢) satisfies the ordinary differential equation

o (;’;) = mg? (®)

The classical equations of motion are obtained from (5) and the system
Lagrangian

L= (—-az‘z2+a3¢.$’—a3m2¢2)

|

in the usual way:

8L _ - _ 8S
% - Gd=3
AL _ 34 _ 38
L=ap=4

This then gives the relations

O

The prime here signifies differentiation with respect to ®, and the dot denotes dif-
ferentiation with respect to time. Differentiating (7) with respect to ¢ and using (6),
we can obtain the equations of motion in the usual classical form:

$+354+m?=0

(2)' =8 +mg ®

() + ()" = ~2d 4+ mrg?
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These equations of motion are invariant under the transformation ¢ —
—t. The three equations of motion can be combined to give one, in which the time
parameter ¢ does not appear:

24 dé dg\*] _
452:17-{-(34)54-1) [1—(-2;)]—0.

(For the sake of convenience, we use the variable & = Ina from here on.) This
equation completely describes the classical trajectories. The direction of motion is
determined by the choice of direction in time.

At this point we should clarify the issue of whether the sign of the action
S has anything to do with such notions as expansion or contraction of a cosmological
model. This issue is discussed in the context of “tunelling” wave functions [37], [38].
Eq. (5) and (7) may lead to the impression that S < 0 (and f > 0) corresponds
to the expansion (@ > 0), while the opposite choice S < 0 (f < 0) corresponds
to the contraction (@ < 0) of the cosmological volume. However, the choice of the
parameter ¢ in these equations is absolutely arbitrary. The functions S > 0 (f<0)
can perfectly describe expansion if one just changes the parameter ¢ to —t in eq.
(7). Thus, the sign of the action does not attach a definite meaning to the direction
of evolution along the classical trajectories.

All trajectories of the model (8) in the (¢, ¢) phase plane have previously
been found [39] and it has been shown that in the case of expansion (i.e., @ > 0),
the trajectories all start out from two ejecting nodes K; and K (see Fig. 6). Apart
from these trajectories, there are also two attracting separatrices that originate at
two saddle points, S;, S;. The solutions of eq. (6) have the following asymptotic
behaviour for trajectories that start out from the nodes:

frce®, 2> mle ¢ = const.
and for the separatrices

f= :%mds, 9¢4% > 1.

Different values of C select different trajectories leaving the nodes. Consequently,
the choice of a definite solution of eq. (6) gives a definite function S and a definite
classical trajectory.
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We will distinguish different solutions of eq. (6) by the subscript n, which
varies continually and takes on two values, corresponding to the separatrices. By
virtue of the linearity of the WD equation, we can symbolically write a more general
solution of eq. (2) to lowest order in the form

Y= Eezp(iA,. +1iSs), Sp = —ezp(3a)fs., A.= const.

0

To every quasi-classical wavefunction ¥, = exp(:S,) one can put into correspon-
dence a family of normals to the surfaces S, = const. (Fig. 7) These surfaces are
constructed in the minisupespace (a, ®), with metric tensor

G* = e %diag(—1,+1), pv=12 z'=a, z*=¢ 9

The vector normal N, to S, = const can be obtained by acting on
¥n = ezp(iS,) with the momentum operators 7, and wy:

ﬁa’bn:%%d’n:% n=Na¢n

ﬁ¢¢n=%5%¢n=%s;’¢n=N¢¢n

Taking into account egs. (5), (9) one obtains N* = 3f, N* = f'. Inte-
grating the relation

along every classical path in the (a, @) plane, one gets z(a, ¢) = const, where

zEa+3/(%)d¢.

In the case at hand the family of normals to S, and associated tangent
vectors N®, N* are independent of o and transform back into themselves under the
shift @ — a + const, or a(t) — const e a(t). This symmetry is the reflection of the
fact that the function a(t) alone does not appear in eq. (8). Since the vector (N<,
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N*) points in the same direction as the momentum vector (I, I14), the normals
trace out classical trajectories in («, ¢) space. Therefore, invariance of the family
of normals under the displacement @ — a + const signifies that for a given Sy, the
curves traced out by normals are all copies of the same classical solution in the (¢,

) plane.

Thus, we learned to see that different solutions to the Hamilton-Jacobi
equation determine different wave functions in their lowest (in terms of k) approx-
imation. On the other hand, to a given S, one can assign a family of classical
trajectories. In the case considered above they all happened to be the copies of one
and the same physically distinct classical solution. However, it is just a consequence
of our flat-space approximation, k = 0. In general, it is not the case. One can anal-
yse [40], for example, the family of classical solutions singled out by one particular
wavefunction, namely by the Hartle-Hawking wavefunction.

The next h-order approximation to S, defines the prefactor to the wave
function ¥, ~ €. The prefactor is responsible for forming a packet from classi-
cal trajectories determined by S,. It assigns different “weights” to different paths
orthogonal to S, = const.

Let us return to eq. (4) for o,. The general solution for o, can be
expressed in terms of the function f.(¢):

on(a,d) = % (3a+In f;) + Ba(2),

where B, is an arbitrary function of its argument z. In the present approximation,
the general solution to WD equation can be written in the form

V=3 Zntpn=3_ Zn exp(iS, +ion) (10)

where

¢n — 67! ei‘y,. (aaf,',)_llz e—iaaf“. (11)

¢, and v, are arbitrary real functions of 2, Z, are arbitrary complex numbers.
One can see that to every path z = const in (@, ¢) plane one can assign the
number Q, = £2(z) which is conserved along this path. The particular value of
Q. is determined by the chosen boundary conditions for the wave function, and
specifically by the function £,(2).
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Chapter 56

Form the Space of Classical
Solutions to the Space of Wave
Functions

From the problems of distributing “weights "ampng different classical trajectories
belonging to the same family determined by S, we now turn to the more difficult
problem of distributing “weights among the wavefinctions themselves. As we saw
above. the WKB components ¢, ,(11), participate in the general solution (10) with
arbitrary complex coefficients Z,. They determine one or other choice of possible
wavefunctions. How can one classify the space of all possible wavefunctions?

To answer this question we will start from the simplest situation, when
the number of linearly independent solutions to WD equationis just two. For this
aim we will first consider eq. (1) in another limiting case, namely, when the term
—;ﬁ-%; can be neglected. In this case the variable ¢ plays a role of a parameter
and the problem reduces to the one-dimensional problem. The basic eq. (1) can be
written in the form (for k = +1):

1d d
P 42 2.4 —
(anaa 2 +H a):/)(a) 0 (1)
where H = m?¢*. We prefer to work with exact solutions to eq. (1) so we choose
p=—lor p=3 [41] [42]'. We will write the exact solution for the p = —1 case

1The case p = —1 was first considered in ref. [43).
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/2
'/)(a) = u1/2 [AIHI(;?! (3H2) + AgHg; (st)] s H?%a? >1, (2)

P(a) = (—u)"/? [19,11,3 ((;';}:/2) + By Ky 3 ((—;—“}%Z/-z-)] , H*a* < 1, 3)

where u = H?a?—1 and I3, Ky/3, H1 /3 H12) are the Infield, Macdonald and Hankel

special functions.

Eq. (1) has the form of the Schrodinger equation for a 1-dimensional
problem with the potential V(a) = a®?— H?a* (see Fig. 8). A, A; and By, B; are two
pairs of constant arbitrary coefficients multiplying two pairs of linearly independent
solutions. By matching the solutions (2) and (3) at the point @ = 1/H one finds
[41], [42):

Bl = —Al(l + l\/g) A2(1 - l\/—) Bg = ——(A.z bl Al)

Now let us characterize the full space of the wave functions?. In the
present case, our quantum system has just two linearly independent states and
therefore resembles a simple spin —1/2 system. Let us call arbitrarily chosen basis of
states |1 > and |2 >. A general state |t > can be expanded as [ > Z1|1 > +2,(2 >,
where Z; and Z, are arbitrary complex constants.

It is a general principle of quantum mechanics that state vectors wich
differ only by an oerall non-zero multiple A describe one and the same physical state.
Thus, the pair of coordinates (Z, and Z;) and the pair (AZ; and AZ;) are equivalent.
It follows that physical quantities can only depend on the ratio { = Z;/Z, wich is
invariant under rescaling. In our example above we may identify Z; with B; and
Zy with B,. It is convenient to introduce the notation B, = |Bi|ezp(if1), B: =
| Bz|exp(iBs), B = B1— B2 and then { = B! = zexp(if). The ratio { parametrizes the
points on a 2-dimensional sphere and so we see that the set of possible wavefunctions
is in 1 — 1 correspondence with the points on the 2-sphere.

We now wish to place a measure on the space of quantum states. Of
course there are many possible measures. However, in choosing a measure we should

2Here we mainly follow to ref. [44].
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be guided by the principle that the measure should be independent of the arbitrary
choice of basis states || > and |2 >. That is if we perform a unitary change of
basis, wich will preserve all probability amplitudes, then the measure should remain
invariant.

The invariance of the measure may be taken as the quantum analogue
of the principal of general covariance in classical general relativity. In fact in the
classical limit it corresponds to invariance under canonical transformations. This
latter invariance was used in ref. [45] to suggest a suitable measure on the set of
classical solutions.

For a 2-state system the 2-dimensional unitary transformations will act
(provided |1 > and |2 >) are normalised) on the complex 2-vector (Z; and Z,)
by multiplication by a 2 by 2 unitary matrix. Clearly the ratio ( is unaffected by
matrices wich are merely multiples of the unitary matrix so we may confine attention
to special unitary matrices of determinant unity, this still allows minus the identity
matrix so if we want just the transformations wich change the physical states we
must identify to SU(2) matrices wich differ by multiplication by minnus one. That
is, the effective physical transformations acting on the space of quantum states is
the rotation group SO(3) = SU(2)/C, where C, is the group consisting of +1 and
—1. In fact this acts on the 2-sphere in the usual way provided we identify 8 with
the longitudinal angle and = = cotan(8/2) where 9 is the usual co-latitude.

It is now clear that we mut choose for our invariant measure on the space
of quantum states the usual volume element on the 2-sphere. This is clearly invariant
under rotations and up to an arbitrary constant multiple it is unique. That is the
measure on terms of 3 6:

dV =sinfdfdp, 0<<nx,0<B<2r (4)

Of course the measure is just the riemannian volume element with respect to the
standard round metric on the 2-sphere.

It should be mentioned that the well known Hartle-Hawking wavefunction
[46] is exactly the south pole (§ = 7) of the 2-sphere. This wavefunction is real.
Another real wavefunction corresponds to the north pole of the 2-sphere. We call
this wave function anti-Hartle-Hawking wavefunction. All other wavefunctions are
complex.



707

Chapter 57

On the Probability of Quantum
Tunneling from “Nothing

The measure introduced in the space of all wavefunctions may allow us to formulate
and solve physically meaningful problems. We will try to pose one such a problem
already in the considered simplest model. As was mentioned above, eq. (1) looks like
the Schrédinger equation for a particle moving in the presence of the potential V(a).
The form of the potential (Fig. 8) motivates the expectation that some of the wave-
functions may be capable of describing the quantum tunneling or decay. In ordinary
quantum mechanics the quantity D, where D = 4 “: |2 can be interpreted as the
quasiclassical probability for the particle to tunnel from one classicaly allowed region
to another (see Fig. 8). The wave- function used in this expression is determined by
the imposed boundary conditions, i.e. it is determined by the physical formulation
of the problem. The value of D is always (much) less than unity, D < 1, for wave-
functions describing quantum tunneling or decay. One can define a similar quantity
D in our quantum cosmological model. however, the physical interpretation of D
is not clear. The main difference from the quantum mechanics is that in ordinary
quantum mechanics one imposes suitable boundary conditions in time t abd space
x, while in our problem there is only one coordinate, a' . Nevertheless, we will

adopt the same definition of D in our problem: D = ]w( )I2 p < 1. This quantity
is well defined mathematically and can be calculated for every solution of eq. (1)

LThe notion of the break of classical evolution in quantum cosmology is rather intrincate. We
have argued in ref. [47] that only in superspaces of more than one dimension this notation can be
clearly formulated.
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regardless of its interpretation. Since in our actual problem the “energy "¢ = 0, we
can provisionally interpret D as the probability for the creation of the Universe from
“nothing "?. Therefore, we are interested to know wich wave-functions predict D < 1
and wich predict D > 1. It is not excluded that the waye-functions predicting D < 1
can be eventually justified ti be describing the quantum tunneling from “nothing ”,
or rather from the “vacuum ”of some more deep quantum theory.

It is easy to claculate D in the approximation H < 1 [41] [42]. One can
see that different choices of wave-functions give different values of D. For instance,
the Hartle-Hawking wave-function corresponds to the choice B; = 0 and gives D =
ezp(55z > 1. We are interested in the value of D for a typical wave-function. In
other words, how many wave-functions give D < 1 or D > 1? To answer this
question one must consider the space of all possible wave-functions with a suitable
measure. By using the measure (4) one can show that the set of wave functions
predicting D > 1 is very small compared with that predicting D < 1. This follows
from the fact that the surface area covered by the wave-functions with D > 1
is very small compared with the total surface area of the 2-sphere. Indeed, the
line separating D > 1 and D < 1 regions on the 2-sphere corresponds to 8 =~
7 — 2ezp(—333), * — 0o < 1. Only a small area around the south pole 8 =  gives
wave-functions with D > 1, the rest of the surface of the 2-sphere corresponds to
wave-functions with D < 1. The ratio of the surface area around the south pole
to the total surface area is very small; it is equal to ezp(—5%r) < 1. Thus, one
can say, that the probability of finding a wave-function with D > 1 (among them
is the Hartle-Hawking wave-function) is very small. One can conclude that the
overhelminh majority of the wave-functions seem to be capable of descrcibing the
quantum tinneling or decay, since they predict D < 13.

The simple example presented above clarifies the notion of the measure
in the space of all physically distinct wave-functions. In the similar way one can
introduce the measure in the multi-dimensional space of wave-functions (10) [44].
The use of this measure shows that the inflation is indeed a property of a typical
wave-function, at least, under some additional assumptions adopted in [44] [41] [42].
The possibility of assigning different “weight "to different wave-functions suggests
that they may be governed by a Wave Function given in the space of all wave-
functions, that is the complex coefficients Z, in eq. (10) may become operators.

2This is slightly more precise formulation of the notion, introduced at the begining of these
lectures and graphically depicted in Fig. 1.

3Interestingly enough, the product of surface areas with D > 1 and D < 1 to their corresponding
maximal values of D gives approximately equal numbers, both of order of unity.
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This is why it was conjectured in [41] [42] that we may find “the concept "of a
“secondary ”wave-function in the space of all possible wave-functions to be a useful

one. It sems to me that the so-called “third ”quantization of gravity, so popular
now, is an effort in the same direction.
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Chapter 58

Relic Gravitons and the Birth of
the Universe

The quantum cosmological mini-superspace models analyzed above included only
two degrees of freedom and corresponded to homegeneous isotropic universes. The
inclusion of all degrees of freedom at the equal footing would present a formidable
problem. However, this problem can be simplified in a perturbative approximation.
This can be considered as a quantum-mechanical description of a slightly perturbed
homogeneous isotropic universe. In particular, the Schrédinger equation for gravi-
tons, eq. (1), can be derived from the fully quantum cosmological approach as some
approximate equation.

Let us consider a closed universe governed by an effective cosmological
term A and perturbed by weak gravitational waves. The WD equation for the wave
function of the universe can be written in the form (see, for example, [48]):

+ Y Huim(a, hutm) | 9(0, {huim}) =0 (1)

nim

118 o a 2 Ip[ 203
———agPoiag = — | — ) —
2aa?0a" 3aa 2+31r(lo) 2

Here h,im denotes the amplitude of the gravity wave perturbation in the mode (n,
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1, m)'. H,n, denotes the Hamiltonian of the perturbations:

2
Tnim l

Huym = oM + 2MQ:hfl,m
where 72, is the momentum canonically conjugate to hum, and M = a, 0 =

a~!(n?* — 1)¥/%. In what follows we will not write indices n,l,m unless they are
necessary.

The cosmological wave function depends on a scale factor and a set of
haim superspace variables: 9 = ¢(a, {h}). We will assume that y(a, {h}) satisfies
the quasiclassical approxiamtion with respect to the variable a. Then the ¥(a, {h})
can be presented in the form ¥(a, {h}) = ezp[—A(a) — Ai(a)]®(a, {h}) where A(a)
is the “unperturbed ”(background) action and A,(a) is the prefactor of the back-
ground wave function. ®(a,{h}) is hte part of the total wave function describing
the fluctuations. We assume that the fluctuations do not affect the background so
that the term ‘(.’,’T‘! can be neglected in eq. (1).

The wave function ¥(a, k) for each mode of fluctuations obeys the Schrodinger

equation
18y
———t =H 2
i aly v 2)
where ag—" = —ii—%{:—g—a, ® = [Ium . We can see that in the regime when A(a)

describes classical Lorentzian evolution (that is, it describes the De-Sitter solution)
eq. (2) coincides with eq. (1)%. However, eq. (2) can domore than that. It is still
valid in the regions where A(a) describes a classically forbidden behaviour of the
universe, i.e. in the under-barrier region a < 1/H (see Fig. 8). In this region eq.
(2) takes on the form of the Schrédinger equation written in the imaginary time.
Thus, the graviton wave function ¥(a, h) extends to the classically forbidden region
a < 1/H and is sentitive to the form of the background wave function in this region.

Our final goal is to show that the quantum state of gravitons at the De-
Sitter stage (before the amplification has started) may depend on the actual form of

1Since we are working in a closed 3-space, it is convenient to attribute he indices I, m to spherical
harmonics.

20ne has to take into account some obvious modifications related to the fact that k = 0 was
used in eq. (1) and k£ = +1 is used in eq. (2).
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the background wave function of the Universe in the region a < 1/H. Everywhere
in our previous discussion we were assuming that the initial state of gravitons at
n = 1, 75 — —oo was the vacuum. The present-day observational predicts were
also derived under this assumption. However, this assumption, though quite usual
and natural, is not obligatory. If the initial state of gravitons could have been a
non-vacuum state, then it would lead to to the differing predictions on the to-day
spectrum of relic gravitons and their squeeze parameter r. In this way, by measuring
the actual parameters of the relic gravitons, one could even learn something about
the wave function of the Universe in its classically forbidden regime.

The possible deviations of the initial quantum state of gravitons from
the vacuum state can not be too large, they should satisfy two requirements. First,
they should not violate our basic assumption that the back-action of gravitons on
the background geometry is always negligibly small. Second, they should not lead
to predictions for the present day amplitudes which would exceed the existing ex-
perimental limits. By combining these requirements one can show that only for
low-frequency waves and only for cosmological models with minimally sufficient du-
ration of inflation the initial quantum state of graviton modes can deviate from the
vacuum. In this case the deviations of the present-day spectrum can be as large as
is shown by a broken line in Fig. 9 for a specific model where Iy = 10%/p;. In this
figure the dotted line shows the spectrum produced from the initial vacuum state in
the same model. And the solid line shows the highest possible inflationary spectrum
compatible with the obsevational limits3,

Now we return to the question of which of the background wave func-
tions may admit the deviations of the initial quantum state of gravitons from the
vacuum. As we already saw, the Hartle-Hawking wave function t,yy are, in a
sense , two extremes in the description of the classically forbidden domain. Each
of these extrems can be used in eq. (2) as a background wave function. For each
of them the solution to eq. (2)can be presented in the form (compare with eq.
(5)): ¥(h,n) = C(n)eB™¥". However, the choice of Yy or Pouy in the classi-
cally forbidden region changes the character of solution for the function B(n). It is
reasonable to restrict the wave function ¥ (k,n) by the condition of being normal-
ized: f:’:,{}':v Y*Ydh < oo. If this condition is imposed it leads to the restriction
Re B(n) > 0. It turns out that this restriction singles out only the vacuum initial
state if the background wave function is ¥zy and it leaves the room for non-vacuum
initial quantum states if the background wave function is ¥, gg. Thus, if relic grav-
itational waves are detected with properties different from those following from the

3This line is just a low frequency part of the inflationary spectrum presented in Fig. 4).
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initial vacuum state one could conclude that the Universe was described by Yapnn,
and not by wHH, in the classically forbidden regime. This would strenghten the
hypothesis that the Universe was created in a quantum process similar to quantum
tunneling or decay. Thus, the difference between possible wave functions of the
Universe in the classically forbidden regime can be distinguished by exploring the
properties of the gravitational wave background existing now.
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FIGURE CAPTIONS
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Fig. 1 The scale factor of a complete cosmological theory.
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Fig. 6. Classical trajectories at the compactified (¢, ¢) phase diagram.
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