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Chapter 1

Introduction.

A magnificent progress in our understanding of Nature at the two extremes of very
small and very large scales that was reached in the last 10-20 years is reflected
in the name "Standard Model” used for both the elementary particle theory and
for cosmology. They are, of course, two different standard models, though closely
related to each other, and their symbiosis has proved to be one of the reasons for the
success. It was not the main reason for the success in particle theory but definitely
played a major role in the development of the modern cosmology. Now the table is
turned to some extent and cosmology gives a strong indication to an incompleteness
of the standard model in particle physics which may lead to a further progress in
the latter. At the present day all experiments in high energy physics are in a very
good agreement with theoretical calculations and only astronomy spoils the picture
by presenting the data which demands new physics, the so-called physics beyond the
standard model. One may argue that there is not much of success if it is necessary to
invoke new physics for an explanation for some phenomena in cosmology. Still there
is a big difference between the old and the new cosmology because earlier a lot of
cosmological problems could not be resolved with any reasonable physical hypothesis
and now their solution is achieved with relatively mild physical assumptions. I do
not mean, of course, that all the problems are solved. On the opposite, it seems
that we see only an edge of a very interesting new world and may hope to see more
in the nearest future,

In this lectures I will consider these two standard models of particle physics
and cosmology and analyze their possible inconsistencies. As a rather separate sub-



ject I will discuss the cosmological machinery which permits to obtain information of
the particle properties supplementary to that accessible from the direct laboratory
measurements. This will be done on the example of neutrinos. We will start with
a brief introduction into the theory of elementary particles based on the famous
symmetry group SU(3) x SU(2) x U(1) with the minimum particle content and
with the discussion of possibilities as well as theoretical need for extensions of the
minimal model. After that the standard cosmological scenario with inflation, barye-
and nucleo- synthesis and a short discussion of the large scale structure formation
will be presented. An attention will be given to the kinetics of elementary particles
in the hot primeval plasma and to the phase transition in the theories with spon-
taneously broken symmetries. Related to that is the discussion of the properties of
the topological defects and their cosmological role which will be shortly presented.
I also plan to consider the problems of the cosmological constant and the problem
of the initial state in the big-bang theory as well as a possibility of the modification
of the standard cosmological scenario in this connection.



Chapter 2

The Minimal Standard Model
(MSM) in Particle Physics.

A. Classification.

The Minimal Standard Model is now very well known to the community. So
I will be rather brief here. The fundamental matter constituents are presented by
two very much different (at least at low energies) sets of particles: quarks (g} and
leptons (). They all are fermions having spin 1/2. Inside each set the particles are
grouped into pairs or doublets which are also called families.

Known leptons form three doublets: electronic (¥, e~), muonic (v, z") and
taonic (v, 7). Electric charge of the first member of the family, neutrino, is equal
to zero and the second member is charged with the charge equal to (—1) (in proton
charge units). Charged leptons are relatively light particles (r maybe an exception)
with the masses: m, = 0.5 MeV, m, = 105 MeV, and m, = 1.8 GeV. All direct
measurements of the neutrino masses are compatible with zero. The corresponding
upper bounds are (see Particle Data Group).

m,, < 8eV (0.1)
m,, < 500KeV (0.2)

Myr < 32MeV (0.3)



There are known also (almost) three quark families: (u,d), (¢, s), and (¢, 5).
Electric charge of the first member of each quark family is (+2/3) and that of the
second member is {(—1/3). Of these 6 quarks only one, the heaviest ¢, has not yet
been observed experimentally. The expecied value of the mass found from radiative
corrections to the observed processes is around 150 GeV. Recently the CDF group at
Fermilab announced the observation of several events which may be considered as an
evidence of the observation of t-quark with the mass around 175 GeV. The masses
of the other quarks are: my = 4 MeV, m, = 7 MeV, m, = 150 MeV, m. = 1.2 GeV,
and ms = 4.9 GeV. These results are valid for masses measured at large momentum
transfer when the effects of the quark interactions are not essential. By this reason
the masses are called the masses of current quarks (in contrast to the constituent
quarks). The effect of interactions is especially important for the light quarks.

Each quark may exist in three completely degenerate states which have the
same mass and exactly the same interactions and are called the color states. So
quarks are described by color (they are indistinguishable in color} and flaver. The
latter refers to the different quark families.:

At this point we need 12 parameters ({masses) to describe the model. The
value of the masses is one of the unsolved mysteries of the standard model. They
span the range from practically or exactly zere up to O{100) GeV. At the present
day we have very little knowledge of how these values can be understood. The most
puzzling are probably the small masses of neutrinos. Though only the », mass is
strongly bounded by experiment, cosmology gives similar upper limits for v, and v,
if they are stable (see below). With our present knowledge we cannot exclude that
all or some neutrino masses are exactly zero. There are some data however implying
nonvanishing values for neutrinc masses, namely the deficit of the solar neutrinos
and the anomaly in the fluxes of muonic and electronic neutrinos. These phenomena
may be explained by neutrino oscillations which are possible and moreover natural
if the masses are nonzero. Cosmology also hints that the mass of one (or all) of
the neutrino species may be in the range of 10 eV. Massive neutrinos are natural
candidates for the so called hot dark matter.

B. Gau rinciple and interactions.

Interactions of the fundamental fermions is described by the exchange of
vector and scalar bosons. There iz also gravitational interaction induced by the
exchange of tensor bosons {gravitons) but we neglect them in this section. The
strongest part of the interaction associated with the exchange of vector particles



is rather well understood theoretically and is described by the principle of gauge
invariance. We will first discuss this principle for the simplest case of electromagnetic
interactions for which it was historically first formulated. The operator (or the wave
function} ¢ describing an electrically charged particle always enters the Lagrangian
in the combination 3*t). This combination is invariant with respect to the phase
rotation ¥ — exp(ie®)yp where e is the electric charge of the field . For a constant @
the kinetic part of the Lagrangian which contains *84 (for fermions) or (G*)(Sv)
(for bosons) is also invariant. However it is rather unnatural to make the phase
rotation all over the Universe simultaneously with the same phase. Much more
natural is the phase which depends on the space-time point, # = #(z*). In this
case however the kinetic term is not invariant and transforms in accordance with
8(0,¥) = ied,Byp. To compensate this variation and to make the theory invariant
with respect to phase transformation with an arbitrary #(z) one has to introduce a
new vector field A (x) which appears in the combination

B8, — 8, ~ ieA, (0.4)

Under the phase rotation (or in other words under gauge transformation) the vector
field A, should transform as

A, — A, — 10,0 (0.5)

To make the field A, a dynamical variable one has to introduce a kinetic term for it
which must be invariant with respect to the gauge transformation. It dictates the
form of the latter to be £ = —F2 /4 with F,, = 8,A, — 3,A,. We got in this way
the usual Maxwell electrodynamics.

For more complicated theories the gauge transformations include not only
phase rotation but may alse transform one field into another. So the transformation
is not a multiplication by a number but by a matrix in the field space. The idea
of generalization of gauge transformations of quantum electrodynamics which form
U(1)-group to the case of more complicated groups belongs to Yang and Mills (1954).

The transformations of U/(1) commutes with each other i.e. two transfor-
mations made in different order lead to the same result. Such groups are called
Abelian groups. Theories based on non-Abelian groupa are much more interesting
and rich. The simplest example of non- Abelian group is the group of rotations when
e.g. rotations around axes X and Y lead to a different result than the same rotations
made in inverse order.
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Let us consider a theory invariant with respect to a non-Abelian compact
continuous group g. Let ; (§ = 1,2, ...n) is an n-component field transforming by
an irreducible representation of the group. This means that under transformations
of g the components of ¢ are expressed through each other and so that they can
not be divided into separate pieces that do not mix. The action of g on % can be
described by n x n matrix G

¥ = Gl (0.8)
The matrix of any transformation from g can be written as

N
G = exp(i Y arJy) (0.7
k=1

where o are some numbers which are called the parameters of transformation and
matrices J; which can be taken Hermitian are the group generators. The number
of independent group generators is called the group order and the number of the
generators which commute with each other is the group rank. For example the group
of rotations is the group of the third order and the first rank.

If 1 is a spinor field the kinetic term in the Lagrangian has the form

L= 55D 08)

where Y48, = Pv*8,9 — (3.9)y", 7, are the Dirac matrices, and ¥ belongs to
the conjugate to v representation so that the product $'y; is invariant under the
group transformations:

Fb; — T eap(—ia*Ji)exp(ic’ I = ¥ (0.9)

If however the group transformations are local i.e. the parameters o* are functions
of coordinates then expression (0.8) is of course noninvariant. There appear terms
proportional to 8,a*. To compensate them one has to substitute covariant deriva-
tives instead of the usual ones as it has been done in the considered above case of
electrodynamics:

O — Dyp = B +igA0 (0.10)
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Now A, is not a single field but the matrix:

A= )ﬁfj Ak (z) i (0.11)
k

One can check up that substitution {0.10) makes the term %D, ¢ invariant under
local transformations of group g if A, is transformed as

A, — A, + éa,,a*.f., —ia* [Tk, A,] (0.12)

where [Ji, A,] = JeA, — AuJp is the commutator of J;, and A,.

The kinetic term of the fields A% can be formally written as above (—1/2)Tr(F},)
but now F,, has the form

P, = 8,A, ~ 8,A, +ig[As, A} (0.13)

where the extra term is the commutator of the matrices A, and A,. In the Abelian
case this term evidently vanishes. The product T'rF?, is invariant under trans-
formation (0.12). T'r means trace of the product of matrices Ji. The coefficient
1/2, instead of 1/4 in the Abelian case, is connected with the usual normalization
condition TrJ; = 1/2.

Let us formulate the main lessons that we have learned. First, if a sym-
metry is realized locally then there should be present vector fields which mediate
interactions between particles. Second, if the local symmetry is more complicated
than simple {/{1) there appear not a single vector field, as in electrodynamics, but
several ones the number of which is equal to the order of the group. Third, the
condition of gauge invariance fixes the interaction of matter fields with the vector
fields which is of the form g¢A,v*1. Fourth, nonabelian vector fields in contrast
to photons directly interact with each other. This is connected with the commu-
tator term ig[A,, A,] in €q.(0.13). In that sense one can say that the vector fields
themselves are charged. Radiation or absorption of nonabelian vector fields change
internal quantum numbers or in other words charges of the source.

There exists a deep but of course not complete analogy between the theory
of nonabelian gauge fields and the theory of gravity. The source of gravitational
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field iz the energy of a system. But gravitons themselves possess energy. This leads
to direct interactions between gravitons and correspondingly to nonlinear theory.
Selfinteraction is inherent to gravitational field as well as to nonabelian gauge fields.

Gauge field theories possess a very important property of renormalizability.
Field theory deals with systems with infinite number of degrees of freecdom. Because
of that quantizing of the theory leads to infinite values of some quantities. We
know from quantum mechanics that the energy of the ground state of oscillater 15
nonvanishing, By = w/2. Quantum field can be represented as an infinite set of
oscillators with eigenvalues ranging from 0 to infinity. The ground state of such
a system has of course infinite energy. This energy is called the energy of zero
oscillations of vacuum. We return to this phenomenon later in connection with the
problem of cosmological constant and now only note that in quantum field theory
this difficulty is simply avoided by shifting the scale of energy by (infinite) value Eq.
This is an example of the simplest renormalization.

There can appear other infinite quantities. For example the perturbation
theory corrections to mass or charge of a particle are expressed through divergent
integrals. This is also connected with contribution of infinite number of degrees
of freedom. If such infinities appear in a finite number of physical quantities one
can stilt work with the theory assuming that these quantities are free parameters
of the theory which are to be determined from experiment. This is the essence of
renormalization procedure.

For formal manipulations with divergent quantities in the theory one or other
regularization procedure is used which consists in cutting off the number of degrees
of freedom. As a rule this cutoff eflectively means introduction of a maximum
momentum pu,:. In renormalizable theories dependence on pm., disappear after
the renormalization is made.

Regularization is an essential ingredient of any quantum field theory. For
gauge theories the usual condition imposed on regularization is that it should keep
the symmetry of unregularized theory. In some cases however symmetries which
peacefully coexist at the level of classical theory can not do that with quantum cor-
rections taken into account. The reason for that is that it is impossible to make
a regularization which respects all the symmetries of initial theory. This phe-
nomenon of breaking classical conservation laws by quantum corrections is called

quantum anomaly.
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The existence of quantum anomalies unexpectedly has resulted in very inter-
esting cosmological consequences. In particular the so called axial anomaly leads to
nonconservation of baryonic charge. The hypothesis about existence of the new light
particle - axion is also closely connected with this anomaly. Because of anomaly in
the trace of energy momentum tensor the massless particle production by confor-
mally flat gravitational field becomes possible. We discuss these phenomena below
in some more detail.

C. Spontaneous symmetry breaking.

Nonabelian gauge fields were not popular in elementary particle physics for
a long time because it seemed necessary that vector bosons should be massless and
no other massless vector bosons except for photon were known. The situation has
changed when the idea of spontaneous symmetry breaking came to particle physics.
One says that a symmetry is broken spontanecusly if the Lagrangian is symmet-
ric but the ground state is not. Ground state in quantum field theory is cailed
vacuurmn. The symmetry manifests itself in existence of several (possibly infinitely
many) ground states which have equal energy and connected by symmetry transfor-
mations. It is said in this case that vacuum is degenerate. A well known example
of a system with spontaneously broken symmetry is ferromagnetic in which the
symmetry with respect to rotations is loat,

The main features of spontanecus symmetry breaking in field theory can
be understood in the following simple example of a complex scalar field with the

Lagrangian
L = (0.¢")(0"¢) — V{(}¢l) (0.14)
This Lagrangian ia symmetric with respect to phase rotations ¢(z) — ¢{z)ezp(i®)

where ® does not depend on z. For a free (noninteracting) scalar field V({|¢[) =
m?|¢|%. In our example we chose V(|¢}) as

V(iél) = Mi¢[*s*)’ (0.15)

The parameter n is real. One can easily see that the state ¢ = 0 is unstable. Indeed
the classical equation of motion of ¢ is

8,0°6 + A ("d—17)¢ = 0 (0.16)
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It follows from this equation that long wave fluctuations of ¢ near ¢ = (0 exponen-
tially rise with time:

¢ ~ exp((2Xd5 — k*)'/7t] exp(ikox) (0.17)

Here k is the wave vector of the fluctuation.

The state ¢ = y is stable. To demonstrate that let us introduce instead of
complex field ¢ two new real fields through the equation

¢ = [n+ é1(2)) explia(z)/ o] {0.18)

The Lagrangian rewritten in terms of fields & and ¢, has the form

L = (Bu0)(@a)(1 + %)’ + (@)@ ) — M2 + 61 (0.19)

Small fluctuations of ¢;(z) and a{z) are evidently stable. Their Fourier modes
has the usual form exp{—iwt + tkx). For the field ¢, the dispersion relation is
w? = k? + 42n*. So the mass of the quanta of ¢, is 292172, For the a-field w? = k?
and so this field is massless. The vanishing of the mass of o is connected with the
possibility of movement on the bottom of the potential V(}¢|) without changing the
energy. Thus the system has infinitely degenerate set of ground states, ¢ =  exp(i®)
with arbitrary phase $. Once the ground state is chosen the symmetry breaks. This
is the spontaneous symmetry breaking.

The appearance of a massless field in this example is not accidental but a
consequence of the general theorem by Goldstone (1961). According to this theorem
massless bosons always appear when a global symmetry is broken.

The word global is very essential. If the symmetry is realized locally, that is
the transformations with variable phase ®(z) are permitted, the situation is quite
different. As we know the Lagrangian should contain in this case the vector field
which compensates the variation induced by the coordinate dependence of the phase:

= —EF:., + |Dudl® — A|¢1* —n*)? (0.20)
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The state ¢ = B is as before unstable and ¢ = n is stable. The field o{z}
introduced through eq.(0.18) now does not correspond to a physical degree of free-
dom because it can be removed by the appropriate choice of the phase ®(z). The
field $(x) = n+ ¢1({z) can be made real. Such a choice of the phase is called unitary
gauge. In this gauge the Lagrangian (0.20) has the form

L= _%F i + (3,8 + g AL + 261 + ¢1) — (201 + &) (0.21)

This Lagrangian describes massive scalar field ¢; with the mass 2¢A/2 and massive
vector field with the mass 2/%¢gn. The latter is given by the term g?A%y?.

Thus starting from the theory of massless gauge field interacting with com-
plex scalar field ¢ we came to the theory of massive vector and scalar fields. The
extra degree of freedom associated with Im¢ forms the longitudinal state of the
vector field (massless vector field has only transverse components). In other words
the vector field A, gets the mass because of interaction with the vacuum conden-
sate of the scalar field < ¢ >= 5. This phenomenon was discovered in papers by
Higgs(1964), Englert and Brout (1964), and Guralnik, Hagen and Kibble (1964).
This scalar field is now called Higgs field. Analogous appearance of the photon mass
in superconductors was found by Ginsburg and Landau (1950).

. Blectro theory.

The theory of electroweak interactions is constructed essentially along the
same lines with the only difference that the symmetry group is slightly more com-
plicated so that the processes with charge transition like

eE+p—v+n

can be described. Here the charge of lepton rises by one unit, (¢~ — ), and
the charge of nucleon respectively goes down, (p — n). The intermediate boson
reaponsible for this process should be charged and so should interact with photonas.
We have already seen that gauge bosons interact with each other if the symmetry
group is nonabelian.

The simplest after U(1) group 1s SU(2). This is the group of rotations
in which double valued (spinor) representations are permitted which corresponds to
half integer values of angular momentum. And it bappens that this simplest possible
nonabelian group indeed describes electroweak interactions. The group SU(2} has
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three generators which on the spinor representation can be chosen as the linear
combination of the Pauli matrices

Ty = {n +i1) /22 = (g 2:;2) (0.22)
r=(n—in)/2 = (yn o) 033)
(3 %) o

Correspondingly this group demands introduction of three gauge bosons W+, W,
and A°. Tau-matrices determine the form of interaction of these bosons with quarks
and leptons:

Line = gor Ay = g0, W, + W) + D"y (0.25)

where 1 is a two-component spinor in the group space, e.g. (v,¢)

The form of matrix 73 shows that if the field A is identified with photon
then the charges of up and down components of the spinor are equal by their, size
and opposite by the signs. We know that this is not true however. By this reason the
choice of SU(2) as a gauge group is not satisfactory if quarks and leptons are indeed
spinors. To solve the problem the slightly more complicated group SU(2) x U/(1)
was proposed. In other words an extra vector field B® was added which interacts
like the photon with the hypercharge prescribed to each particle. The value of the
hypercharge was fixed by the condition

Q=IL+Y/2 (0.26)

where @ is the electric charge of a particle, I3 is the third component of its weak
isospin, and Y is the hypercharge. Evidently Y = —1 for leptonic dublets and
Y = —1/3 for quarks. The photon is a linear combination of the fields Ao and By:

¥ = Beosfhw + Asinbw (0.27)

which proves to be massless. The orthogonal combination is the intermediate vector
boson of weak interactions
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Zg = —Acoabw + Bsinfw (0.28)

The angle B is called the weak angle or Weinberg angle.

It is noteworthy that the condition that the massless vector boson interacts
just with the electric charge of particles ia fulfilled in this model automatically.
This is ensured by the conservation of electromagnetic U(1})-invariance in models
with single dublet Higgs field. The models with several Higgs multiplets should
be organized in such a way so that to maintain electromagnetic {/(1) which is not
always natural.

As we have seen gauge bosons can become massive as a result of spontaneous
symunetry breaking when condensate of Higgs field ¢ is formed. To realize that there
should exist a scalar field interacting both with isotriplet (W+,W~, A% and with
isosinglet B°. This means that ¢ should have both nonzero hypercharge and weak
isospin. The simplest possible choice of ¢ as SU/(2)-dublet has proved to be just the
right one because it gives the ratio of W and Z masses in excellent agreement with
experiment.

Besides the vector fielda the model predicts the existence of the neutral scalar
field with the mass 21/2A1/2y, The other three components of the complex dublet ¢
turn into longitudinal components of massive W and Z hosons.

Interaction of gauge fields with quarks and leptons is described in the stan-
dard way by changing the usual derivatives to the covariant ones (see eq. (0.10).
In comparison to electrodynamics however the theory is slightly more complicated.
The point is that only left-handed neutrinos take part in weak interactions. The
latter are obtained by the projection operator

P

YL 3

W (0.29)

For massless particles this projector picks out definite helicity states, namely nega-
tive ones for neutrinos and positive ones for antineutrinos. (Recall that helicity is
the projection of the particle spin on the direction of its momentum.)

Evidently two-component neutrino and four-component electron cannot be
members of the same dublet. The only way out is the assumption that the weak
dublets consist only of left-handed particles. We know however that right-handed
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electron also exists and interacts with photons because it is charged. Since the
right-handed neutrino, if exists, does not take part in weak interactions there is
no partoer for the right-handed electron and we have to assume that its isospin is
zero but hypercharge is not, ¥(ep) = —2. This gives the right value of the electric
charge.

Thus the right-handed electron interacts only with B® and the interaction
strength is twice as large as that of e;x. The right-handed quarks are described
analogously. The difference in interactions of right-handed and left-handed particles
leads to the famous phenomenon of parity nonconservation in weak interactions.

The separation on lefi-handed and right-handed particles has invariant mean-
ing for massless particles only. Thus in the phase where symmetry is unbroken,
< ¢ >= 0, we have to assume that quarks and leptons are massless. They acquire
mass as a result of spontanecus symmetry breaking if there exists the Yukawa type
interaction:

f (\_bz,'f’mﬁ + Emh&") {0.30)

For nonzero < ¢ >=n and e.g. for ¥z g = e r this gives for the electron mass
m, = f.n. The same mechanism can ensure nonzero masses of other leptons and
quarks with appropriately chosen coupling constants f.

The Higgs bosons generically should interact with a different combination
of fermions than gauge fields. Hence the frame in which the quark rmass matrix is
diagonal does not coincide with the frame where the matrix of W and Z interactions
is diagonal. In particular W-boson transforms u-quark into dcos 8, 4 ssinf, where
8. is the Cabibbo angle. The account of the third quark generation makes the
mixing matrix more complicated. It is parametrized by three angles and is called
Kobayashi - Maskawa matrix. Because of these mixings weak interactions do not
conserve strangeness, charm, etc. Analogous phenomenon is not observed in the
lepton sector. Electronic, muonic, and taonic charges are conserved with a rather
good accuracy. This conservation is an evidence in favor of vanishing neutrino mass.

The model is now complete. In this example the main features inherent
to the gauge models with spontaneously broken symmetry are well seen. First the
theory is formulated for massless particles with possible exception of scalar ones,
Masses appear as a result of formation of the Higgs field (or fields) condensate. This
approach does not permit to make any prediction about the fermion masses. They
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are determined by arbitrary Yukawa coupling constants f; changing from 10~% to
10! for electron and b-quark respectively. Any natural explanation of such hierarchy
is absent now and it makes the Higgs boson construction subject to criticiem. On the
other hand it presents the only known way to construct a consistent renormalizable
theory of weak interactions and it is just the contribution of the scalar particles
which stops the catastrophic rise of vector boson interactions with energy.

The basic principles of this theory were formulated in the works by Glashow,
Salam, and Weinberg about 30 years ago. The intermediate W and Z bosons were
discovered soon after that with the masses predicted by the theory. To complete
the picture one has to find the Higgs bosons. Their searches however is much meore
difficult not only because of their very weak interactions but also because their
masses in contrast to W and Z are not known in advance. The search of the Higgs
bosons is one of the central problems in experimental high energy physics .

Note in conclusion that though the considered model in called the unified
model of electroweak interactions this is not exactly true. The constants g; and
g1 corresponding respectively to the weak isospin group SU(2} and to the weak
hypercharge group £/(1) are independent. In that sense a real unification of electro-
magnetic and weak interactions is not achieved. This has led to numerous attempts
to construct models in which the SU(2) x U(1) group is a subgroup of a larger group
which is characterized by a single coupling constant. These are the so called models
of grand unifications.

E. Qunatum Chromodynamics.

The principle of local gauge invariance is also successfully applied to the
theory of strong interactions. The gauge group in this case is SU(3) acting in the
space of quark colors. Each quark is a color triplet forming a fundamental repre-
sentation of SU(3). The eight generators of SI/(3) in fundamental representation
can be chosen as the Gell Mann matrices A, /2(k = 1,2...8) which are essentially
the Pauli matrices with an added "empty” first, second, and third column and row
for nondiagonal ones. As for the diagonal matrices they are Ay = diag(l,~1,0)
and Ag = diag(t,1,—2)/v/6. The gauge bosons connected with the color SU(3) are
called gluons. The gluon matrix A, is defined in accordance with eq. {0.11) where
Ji = Ai/2 and the field strength G,,, is given by eq. (0.13).

In a compact form the Lagrangian of quantum chromodynamics can be
written as follows



L=-?W%ﬂ“+%ﬁ—Mk (0.31)

where ¢ = [gis] is 2 colon in the space of quark colors ¢ and flavors f. The covariant
derivatives do not depend on the quark flavors but through the matrix A, depends
on color:

(DY = 18161 B, + igh] (A (0.32)

The mass matrix on the opposite does not depend on color but depends on quark
flavor

M=8§'M] (0.33)

By unitary transformation of the quark basis the masas matrix can be diagonalized

M = diag(m,,ms,m., m,,...) (0.34)

Note that the transformation diagonalizing M keeps the covariant derivative matrix
D diagonal.

If the coupling constant g is known the theory is complete. There is a sub-
tlety however in determination of g. It is not inherent to QCD only but exists in any
quantum field theory. It is especially eminent in QCD because of relatively large
interaction strength. The point is the following. Coupling constants in quantum
field theory are not constant but change with the momentum transfer or in other
words with the distance between particles. Thus if one says about the numerical
value of ¢ it makes sense only if the value of the momentum transfer ¢ is specified.
The physical mechanism producing the dependence g(p?) is the existence of virtual
particles around the source characterized by the charge g. The role of these particles
depends on the distance from the source. Let us consider for example the emission
of gluon by quark. The effective coupling constant g(p?) is the sum of the bare
coupling constant g, and the corrections connected with the virtual fermionic and
gluonic pairs. The virtual fermions lead to the charge screening i.e. to the decrease
of charge with rising distance. This phenomenon iz long known in quantum electro-
dynamics and is absolutely evident physically. It remains in nonabelian theories. A
new thing connected with selfinteractions of gluons is the charge antiscreening pro-
duced by virtual gluonic pairs. The mechanism of antiscreening may be understood
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(in a simplified way) as the difference in signa of electric (Coulomb) and magnetic
interactions: the same sign charges repulse but the same direction currents attract.

A more convenient parameter in the field theory is not the charge g but the
square of it, & = g*/4n. In electrodynamics agy = ?/4x 3 1/137 is called the fine
structure constant. It can be shown that o depends on the momentum transfer in
the limit of large p* as

o l(ph)—a(ph) = % 1n§ {0.35)

where b is a constant coefficient. This formula iz obtained by summing up the
perturbation theory expansion in small parameter e. It is valid when p is large in
comparison with the virtual particle masses. If p < m afp) tends to a constant. The
coefficient b depends on the gauge group G and on the number of fermion multiplets.
For G = SU(N,) with Ny fundamental fermions

11 2
b=N.- 3N, (0.36)

The first term here originates from the loops with gauge bosons while the second
comes from fermionic ones. In particular for quantum chromodynamics with six
quark flavors (N, = 3,N; = 6) b = 7 > 0. In electrodynamica photonic selfinter-
action is absent and b = _?_%‘.r_ < 0. The change of sign of b in nonabelian gauge
theories gives rise to the new and very important phenomenon of asymptotic free-
dom. In pure electrodynamics the charge increases with rising momentum and in
chromodynamics it goes down. The larger is the energy of particles the weaker is
the interaction. Though it was discovered in the sixties (Vanyashin and Terentyev,
1965; Khriplovich, 1969) its importance was understood only after the papers by
Politzer (1973) and Gross and Wilczek {1973) and has a tremendous impact on the
farther development of the theory.

Thanks to asymptotic freedom there is a hope to get a theoretical description
of the primeval plasma in the early Universe possibly up to the Planck temperatures
and densities, p = mb, 2 10¥g/em®, T = mp; = 102 K.

With the decreasing momentum transfer or with the increasing distance the
interaction between colored objects becomes very strong, the perturbation theory
in o breaks and the structure of the theory drastically changes. At small distances
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quarks can be considered as free point-like particles. With the increasing distance
such simple description becomes wrong. The colored field strength rises up and
prevents from separation of free quark or gluon. It is assumed that gluonic field
lines form a narrow tube in contrast to the spread Coulomb field and this results in
the potential linearly rising with the distance. The transition from the phase of free
quarks and gluons to the phase where confinement effects are essential takes place
at the distance of the order of 10™*3cm or p = 100Mev. This qualitative picture is
in a good agreement with experiment but at the moment no consistent derivation
of it from the first principles is known.

Quantum chromodynamics predicts that hadronic vacuum has a very com-
plicated structure. In particular there is a condensate of quark-antiquark pairs in
vacuum (Gell-Mann, Qakes, and Renner, 1968):

< TG Ppacre —(250MeV)? (0.37)

This value is derived from the the masses of pseudoscalar mesons (7, &, ). The point
js that the QCD Lagrangian, with light quarks only, possesses the approximate chiral
$U(3)1, x SU(3)g-symmetry which corresponds to separate SU(3)-transformation
of left-handed g = (1 + ¥5)¢/2 and right-handed qp = (1 + 75)q/2 quarks. The
quark masses break the symmetry but since they are small in comparison with char-
acteristic hadronic energy scale the symmetry should manifest itself in the spectrum
of hadrons giving rise to particles with close masses and opposite parities. This is
not observed in experiment however. The absence of degeneracy in parity could be
explained if the symmetry SU(3)z x SU(3)g is broken spontaneously so that only
SU(3)L+r i8 left. The latter is the usual color symmetry of left-handed and right-
handed quarks jointly. As we have seen the spontaneous symmetry breaking leads
to massless Goldstone bosons. Such particles indeed exist. These are pseudoscalar
mesons and especially the lightest among them x-meson. Its mass is not exactly
zero but still much smaller than masses of other hadrons. The deviation of m, from
zero is connected with the approximate nature of the chiral symmetry which in turn
is connected with nonzero quark masses. It can be shown that m? is proportional
to m, < §¢ >. Such arguments permit to express the value of quark condensate
through the known masses of pseudoscalar mesona.

It can be shown that gluonic condensate is also nonvanishing in QCD vacuum
(Vainshtein, Zakharov, and Shifman, 1978,1979):

< G > puc™ (800MeV)* (0.38)
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This numerical value is obtained from the vector meson masses. We recollect these
condensates when we discuss the problem of the cosmological constant.

Spontaneous breaking of the chiral symunetry at least in part is connected
with specific vacuum fluctuations of gauge fields called instantons. These fluctu-
ations are very interesting by itself independently of the chiral symmetry. As we
know the Lagrangian of gauge fields is L = —G%,/2 where G,,, is expressed through
the potentials A, by eq. {0.13). The evident extremum of the action

§= f Ld'z (0.39)

i8 F,, = 0. The potential A, is not necessary zero but could be the so called purely
gauge potential:

Ay(z) = —3U(=)3“U'l(z) (0.40)

where [/(z) is unitary unimodular N x N matrix. It can be checked that for this
A,(z) the field strength tensor F,, vanishes. We asgume that the matrices U/(z) are
nonsingular, do not depend on time and that U(z) — 1 when z — oo, In this case
all infinite points are equivalent and the total three dimensional space is equivalent
to three dimensional sphere §3. The matrices I/ realize continucus mapping of 52
on the gauge group . Each mapping belongs to a particular class determined by
the number of windings of 5% on (3. We consider first a simpler case of mapping of
one dimensional sphere 5! on G. 5 is topologically equivalent to straight line with
identified points +oc and —oo. As an example of mapping let us take

V(z) = exp [iqw%] ,q=0,£1,+2,... (0.41)

where f(x) is an arbitrary function.of z satisfying condition f(z — oo0) — 1. Ev-
idently V; — 1 when x — 1. The transformation V, realizes g-fold winding of 5,
on SU(1). The transformations corresponding to different values of ¢ can not be
continuously transformed into each other.

The representatives of different classes corresponding to SU/(2)-group can
be chosen analogously:
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U(z) = exp |ixg (1 + xr%)] y@=0,x1, 42, ... (0.42)

The case of arbitrary G can be reduced to this one because mapping of 53 on G
can be represented as mapping on its SU/{2)-subgroup. The factor ¢ characterizing
different classes is called topological charge.

According to that, the potentials A,(r) corresponding to the vacuum state
that is to G, = 0 are also divided into separate classes which cannot be continu-
ously transformed into each other in the manifold with zero strength G, . If the
transformations with G, # 0 are permitted then it proves possible to continuously
deform the potential from cone class to that in another class. This means that in
infinitely dimensional space of field variables A,(z) the potential energy of gluonic
field has a set of degenerate minima corresponding to pure gauge potentials. These
minima are separated by barriers where G, # 0. It can be shown that this potential
is periodic.

If these barriers were impenetrable the periodic structure of the potential
would be unessential. Interactions and mixing between the states with different
topological charges would be absent. In reality the barriers are penetrable. The
probability of tunneling through the barrier can be evaluated in the same way as in
quantumn mechanics in quasiclassical approximation. It is determined by the factor
exp{—S5) where § is the action calculated on the trajectory connected the states
which are separated by the barrier. The tunneling is permitted if the action is
finite. The action reaches minimum on the solutions of the classical equations of
motion in imaginary time, ¢ — . Analogous approach is valid also in the field
theory. The solution describing the transition from the state withg=0at t = —oco
to the state with ¢ =1 at £ = 400 is called instanton. The solution corresponding to
the transition with Ag = —1 is called antiinstanton. These solutions were discovered
by Belavin, Polyakov, Schwarts, and Tyupkin (1975).

The action for the Yang-Mills fields can be written as

1 1 . 1 ~
§=—3 / TrGh, d's = =3 [ Tr{£GuGu +5(Gu £Gufdz  (043)

where G, = 3euvapGap and €agy, is the antisymmetric in all four indices tensor,
E1234 = +1.



The quantity GG is the divergence of the four-vector
GG = 4,K, (0.44)

2%
Kﬁl = knmﬂ(AvaaAB + E'gAvAaAﬂ) (045)

By the Gauss theorem the total derivative can be transformed into the integral over
infinity and usually vanishes because the fields sufliciently fast disappear at infinity.
This is not true however in the case we are considering. The action is finite if the
field strength G, quickly decreases but this is not obligatory for the potentials.
Thus the integral

j GG d'z = f 9.K, d'z | (0.46)

may be nonvanishing. This expression of course disappear for purely gauge poten-
tials. It can be presented as a difference of two integrals of K; over three-dimensional
hypersurfaces ¢ = 400 and ¢ = 00!

Tl‘ng &r = 167q/¢* (0.47)

We see from this expression that K, is the density of topological charge of vacuum
fluctuations.

It is easy to see that for fixed f GG d*z the action S possesses minimum in
imaginary time at

G =16, (0.48)

The solutions of this equation are called {anti)instantons. It can be checked up that
G satisfying eq. (0.48) simultaneously satisfy the equation of motion D,G,, = 0.
The explicit solution of eq. {0.48) can be written as

2 {z - z9)s

Ay = Sqp Y
L qu(x_xo)g_'_pz

(0.49)

2
G, =1 ’

T Ty ™z— 2P + PP (050
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where 1, = 9,,:0:/2,(i = 1,2,3), o; are the Pauli matrices, and 1., are the t’'Hooft
symbols:

E iy if 1V=1,2,3
Ruwi = ~Thopi = {6:;, lfi: =4, (0.51)

The following equation is valid for instantons

Tr j GG d'z = 16x3/g (052)

This means that instantons indeed describe the transitions from the vacuum state
with topological charge ¢ at ¢ = —co to the vacuum state with topological charge
(¢+ 1) at t = +oo. The instanton action is

8; = —Bx*/g* (0.53)

Since the action is finite the vacuum in guantum chromodynamics should be a super-
position of gauge potentials with different topological charges. The wave function
of the vacuum is of the form

WA= 3 Catuld) (0.54)

g=-m

-where the functionals ¢, are concentrated on the fields with topological charge ¢.
The coefficients C, are determined from the condition that under a gauge transfor-
mation which changes g the wave functional ¥(A) acquire only a phase factor

F(A) — ¥(A)ezp(if) (0.55)

where 8 is an arbitrary constant phase. To ensure this the coefficients Cy should
have the form

C, = ezpliqh) (0.56)

Note that wave functional {0.54) resembles the Bloch representation of the electron
wave function in a periodic potential with & being the quasimomentum.
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Possible vacuum states are characterized by different values of ¢ which are
strictly conserved but what value is realized in our world is not known. Consideration
of a state with definite value of # is equivalent to the addition to the Lagrangian the
term

_9g ~
Lo = 750TrGG (0.57)

As it has been already mentioned this expression is a total derivative and gives in
the action S = [ Ly d*z the topological charge of the vacuum fuctuations.

Expression (0.57) is not invariant with respect to space reflections. It is a
pseudoscalar in contrast to the scalar G2, So the addition of Ly leads to parity
nonconservation in strong interactions. It is known from experiment however that
effects of parity viclation are very weak and correspondingly the bound < 107% s
valid. The attempts to find a natural mechanism of such a small @ (Peccei and Quinn,
1977) have led to the hypothesis of the existence of a new very light pseudoscalar
particle - axion (Weinberg, 1978; Wilczek, 1978). We will discuss this hypothesis
below and now only note that the axion, if exists, would lead to very interesting
cosmological and astrophysical consequences.

F. More about tum ano A

The terms of the same type as given by eq. (0.57 can appear because of
parity breaking in the quark mass matrix:

L = §(my + imaxs)g (0.58)

The term proportional to myys which breaks parity conservation can be removed by
the transformation

g — exp(iays)g (0.59)
If a = —(1/2)aten(mafm,) then

Ly — \fm? + midq. (0.60)

The kinetic term glq is not changed under this transformation. It seems that we
have exiled the parity violation from the theory but we have forgotten about the
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chiral anomaly. In the theory with masaless quarks the classical action is invari-
ant not only under the transformation ¢ — ezp(ia)q but also under transformation
(0.59). The usual machinery of the field theory leads in this case to the conserva-
tion of the vector and axial currents §y.q and §y.7sq. However ihe conservation
of this two currents is mutually compatible in classical theory only. For example
the amplitude of the transition of the axial current into two vector bosons through
triangle of virtual fermions is given by a divergent expression which can be regu-
larized in such a way that either vector or axial current is conserved but not both.
We know from experiment that conserved is the vector current and this dictates the
choice of the regularization. To this end one can use the Pauli-Villars method. The
latter consists of introducing fictitious regulator fields ¢, with masses m, tending
to infinity. After the renormalization is done the results should not depend on m,.
The contribution of the diagram with virtual ¢, should be subtracted out the corre-
sponding diagram with physical quarks. Such regularization evidently respects the
vector cutrent conservation but spoils the conservation of the axial current because
m, # 0 and so 8,(¢7,79-) = 2m,q,75¢.. Hence the account of regulators in the
triangle diagram of leads to the nonconservation of the axial current (Adler, 1969;
Bell, Jackiw, 1969):
0,0, = L8 ropp 0.61
wh = Tox2 r (0.61)

where 8 is a numerical coefficient determined by the type and number of the virtual
particles forming the triangle in the considered Feynman diagram. For one quark
loop 8=1.

It is essential that the anomaly leads to the nonconservation of the left
currents J = (JY +J4)/2 to which the intermediate bosons of the weak interactions
are coupled. This can be shown to break the renormalizability of the theory. The
disaster is cured by the quark-lepton symmetry. Due to it the contributions of
quarks and leptons into triangle diagram are canceled out and the anomaly does not
arise in the physical currents.

The reader might has got the impression that the axial current nonconser-
vation is a pure regularization effect and with another regularization it possibly
does not exist. It can be shown however that the condition of the vector current
conservation unambiguously determines the amplitude corresponding to the triangle
diagram and the expression for the anomaly does not depend on the choice of reg-
ularization. In particular anomaly ((0.61) can be derived from dispersion relations
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when the amplitude is found from ita imaginary part. The latter is determined by
the unitarity condition and does not need any regularization. In thia approach the
anomaly is a result of infrared singularity in the theory (Dolgov, Zakharov, 1971).

It is easy to see that the variation of action under transformation (0.59) is

55 = —a f B, JA d'z (0.62)

Thus due to the axial anomaly transformation (0.59) gives rise to the terms of the
form (0.57) in the Lagrangian. As a result C'P-nonconserving terms in the quark
mass matrix can be transformed into #-term or vice versa. So if there existed a
massless quark the effects of CP-violation due to L would be unobservable. Ex-
periment however rejects the existence of massless quarks and one has to look for
ancther explanation of the small value of @ like e.g. an existence of a very light
pseudogoldstone boson called axion.

Q. A short conclusion.

This is in essence the Minimal Standard Model (MSM) of particle interac-
tions and classification. It works perfectly. All the testable predictions of this model
are in a very good agreement with experiment. There are however several theoretical
problems with the model which remains unclear. First, the forces are not completely
unified. There are three independent gauge coupling constants. The ratio of charges
of quarks and leptons is not understood. There is no explanation now of very much
different masses of the fundamental fermions which span the range from m, = 0.5
MeV to m, sz 150 GeV or even from m, which'is at most a few eV for v, (and also
for v, and v, if they are stable).

What is absolutely mysterious is that why the Nature is described by renor-
malizable theories. It might be that at the Planck scale all possible kinds of the
interactions are permitted but at small energies only the renormalizable ones survive
because they fall off with energy only as log of the latter while nonrencrmalizable
onies go down as a power of energy. Unfortunately this program was not consistently
realized. An interesting feature of the standard model is that the quarks and leptons
conspire so that there is no anomaly in the physical currenta that is in currents which
interact with the physical gauge bosons. If this were not true renormalizability of
the theory would be broken though in a rather high order in perturbation theory.
On the other hand the existence of anomaly in curtenta which are not coupled to
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gauge bosons may be very essential for our existence because it may be the source
of the baryon asymimetry of the Universe (see below).

To conclude we do not see any experimental data obtained in a laboratory
{(in contrast to astronomy or cosmology) which would force us to extend the MSM
but there are a ot of problems which are poorly understood theoretically and make
the existence of some new physics very much desirable. Cosmology also acts in the
same direction but by very much different reason. Theorists-cosmologists would
be happy to have as conservative theory as possible and the standard cosmological
model probably does not have any serious theoretical drawbacks but experiment
or better to say observations are indicating on something new outside the normal
physics.
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Chapter 3

The Standard Model of the
Universe Evolution

The standard big bang theory is in essence the extrapolation into the past of the
observed picture of the expanding homogeneous and isotropic (on large scales) Uni-
verse. The cornerstones of the theory are the equations of General Relativity (GR)
and the equation of state of the gravitating matter. The model is characterized by
a small number of measured in astronomy parameters and its consequences, though
not numerous, well agree with the observations. The most important evidence in
favor of the hot universe model is the microwave background radiation (Penzias and
Wilson. 1965) and the predictions of the primordial nucleosynthesis theory (Wag-
oner, Fowler, and Hoyle, 1967). This makes the standard model unbreakable at least
in the space-time region where the corresponding processes take place. Modifications
of the standard scenario are possible so far as they do not change the successful pre-
dictions of the theory. During the last 15 years the notion of the standard scenario
has essentially changed but all this refer to much earlier period than the primordial
nucleosynthesis. Now the standard scenario includes the baryosynthesis (Sakharov,
1967), inflation {the history of the problem is given below but probably the first clear
formulation of the model was proposed by Guth, 1981), phase transitions and the
change of the symmetry of the state with decreasing temperature (Kirzhnits, 1972),
and so on. We have mentioned here only the pioneering papers, more references are
given in the corresponding sections below.

In principle the large scale distribution of matter and the global geometry
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of the space-time may differ from those of the simple standard picture. In par-
ticular some inflationary models predict very inhomogeneous universe however on
the scales much larger then the present-day horizon, { > 10 years (Linde, 1986;
Starobinsky, 1986). Moreover the island universe model {Dolgov and Kardashev,
1986) predicts very inhomogeneous distribution of the baryonic matter on the scale
of the present-day horizon still compatible with observations. Nevertheless the sim-
ple homogeneous and isotropic Friedman cosmology has its region of application.

For the reader interested in the history of big bang cosmology a very good
review by Alpher and Herman (1988) may be recommended. The authors of the
review together with Gamow collaborated in the formulation of the hot universe
model,

3.1. The expansion law in the homogeneous and isotropic model.

The observed homogeneity and isotropy of the Universe on the scales of
several hundreds megaparsec permits to take as a good idealization the homogeneous
and isotropic model. In such a model the 3-dimensional space is the space of constant
curvature. The element of length squared in this space has the form

dz? + dz3 + dxd

”=F;zxq'

(0.1)

where a has the dimension of length and do not depend on the space coordinates x;
but can depend on time. Parameter k can have values +1 or {). If ¥ = 0 the space is
Euclidean and the cases ¥ = +1 and k = —1 correspond to the space with constant
positive or negative curvature respectively. For k& # 0 e is the curvature radius of
the space. If k = 0 the scale a is arbitrary. In what follows it is convenient to pass
to dimensionless comoving coordinates %; = z;/a.

In the coordinate frame moving with the matter (the comoving frame) the
4-dimensional interval can be written as

o dE1+ di] + i

ds?® = dt? —
1+ %(23 + 23 + 23)

(0.2)

The metric corresponding to this interval is called the Friedman-Robertson- Walker
metric.
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For the homogeneous and isotropic distribution of matter the energy-momentum
tensor has the form

Tw=p (0.3)

T} = —p, (3,5 = 1,2,3) (0.4)

Here g is the energy density and p is the pressure density. In this case the Einstein
equations are reduced to the following two equations (see e.g. Zeldovich and Novikov,
1975 or Weinberg, 1972):

&= —{4xG{3)(p + Ip)a (0.5)
@ 4x, . k
PR Rl ©0.6)

where G is the gravitational coupling constant, G = 6.673 - 10"%em®y 1572 = 0.59 -
10~*m?, and m, is the proton mass. Hence the Planck mass defined as G = mp}
is

mp =G = 1.30-10"%m, = 1.22 - 10"°GeV 0.7)

Equations (0.5) and (0.6) are easy to understand in terms of the Newton gravita-
tional theory. Let us consider a sphere with radius e(t) and a nonrelativistic test
particle on the border of this sphere. The matter outside the sphere is known not to
influence this particle. Equation (0.5) is the second Newton law for the test particle
with the only difference that in General Relativity not only mass (energy) gravitates
but also pressure does. So instead of the mass of the ball bounded by the sphere,
M = (47 /3)pa® the quantity (4x/3)(p + 3p)a® enters the equation. Equation (0.6)
is the energy conservation law of the test particle, the constant (—&/2) being the
total energy of the nonrelativistic test particle in units of its mass.

Differentiating eq. (0.6) in time and comparing it with eq. (0.5) we get
5= -3H(p+p) (0:8)

where H = &/a is the Hubble parameter. It is easy to check up that the covariaat
conservation law D, T# = T#, = 0 in the case of homogeneous and isotropic universe
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gives just this equation determining the variation of the energy density with time.
We may reverse our arguments. Using the well known law of the energy variation
by the pressure force

dE = —pdV (0.9)

and the equation dV/dt = 3HV we obtain the general relativistic conservation law
{0.8) and from it and the Newtonian energy balance (06.6) we derive the general
relativistic equation of motion (0.5). What is surprising in this argument, that we
never used general relativity but get ultimately the correct gravitational equation
with gravitating both energy and pressure.

A very important cosmological quantity is the so called critical or closure
energy density

p. = 3H[87G = 3H m}p,[8x, (0.10)

Introducing it into eq.{0.6) we can rewrite the latter as

P = p. + 3k{8xGa’ (0.11)

The present-day value of the critical density is

KeV
omd

= 1.06 - 107**hJym; (0.12)

po = 3H2/87C = 1.87- 10-“1.?0,,;?% = 10.6h3,,

where hyop is the dimensionless value of the present day Hubble parameter Hy mea-
sured in 100km /sec/Mpc, koo = Ho/100km/sec/Mpc, and m,, is the proton mass.

Equation (0.11) determines the evolution of the important cosmological pa-
rameter 1 = p/p.:

pa’( -1 = gm’” = const (0.13)

Note that i p decreases with increasing a faster than a~? then in the course of
the Universe expansion ) deviates further and further away from unity and on the
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opposite if p decreases slower then a=? then in the course of expansion §2 approaches
unity.

Thus there are two equations for three independent functions a(t), p(t}, and
p(t). The missing equation is usnally the equation of state p = p(p). Different equa-
tions of state determines diflerent regimes of the universe evolution. The equation
of state is not always applicable however and generally speaking preasure density is
not always a function of energy density. For example such a situation is realized in
the very simple case of homogeneous scalar field ¢(t).

For gas of nonrelativistic particles the equation of state with a very good
precision is the following

p=0 (0.14)
(to be more exact the relation between the pressure and energy densities is p ~
(Tfm)p < p). For p = 0 it follows from eq. (0.8) that p ~ a™. This result is
evident since the energy density of nonrelativistic particles is proportional to their

number density.

The expansion law of nonrelativistic matter is especially simple if 8 = 1:

a(t) = ao - (t/t0)*® (0.15)

For the known function p(a) equation (0.6) can be integrated for arbitrary ). The
duration of the expansion ty (the Universe age) is expressed through the correspond-
ing to that moment values of the Hubble parameter H and {2 as follows

ty = f(0)/H (0.16)

where

F(9) = 0 — 1)~ |arcsin ¥ “nhl _VA-I (0.17)

Q

It can be easily seen that f(1) = 2/3 in accordance with eq (0.15) and f(2 < 1) ~
1+ (21nf)/2. As we see in what follows the dependence of the Universe age i
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on H and §) ia used for the derivation of the bounds on the relic particle masses
(Gerstein and Zeldovich, 1966). To this end the following approximate expression
for iy is convenient

v
2

-1 -1
) = 0.98 - 10" (1 + @) years {0.18)

-1
tyss H (1+ 2

It is valid in the range 0 < I < 4 with the accuracy better then 0.05.

For relativistic ideal gas the equation of state is known to have the form (see
e.g. Landau and Lifshits, 1964):

p=prf3 (0.19)

The energy density in this case scales as a™ (see eq. {0.8)). The extra power of
a~! in comparison with the nonrelativistic case is due to the fact that not only the
particle number density decreases in the course of expansion but also the average
energy of the particles goes down as a~!. Now the expansion time is connected with
the running values of ) and H by the relation

t= k71 + V) (0.20)

If © = 1 the expansion is also of the power law form, as in the nonrelativistic
case (0.15), but with the different power

a(t) = ao(t/to)"/? (0.21)

If ©t <1 and the Universe is open the expansion will proceed infinitely long
while for £ > 1 (closed Universe) the expansion shall turn into contraction. However
this connection between the Universe curvature and her evolution is true only if the
energy density decreases faster than a=* (see eq. (0.6)).

Since in the course of expansion the energy density of relativistic matter de-
creases faster then that of relativistic matter the early Universe should be dominated
by relativistic matter. This period ia called RD-stage while the period of nonrela-
tivistic matter dominance is called MD-stage. This period is probably realized now
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but the dominance of relativistic matter in the present stage is not excluded. To
determine the moment of the transition from RD-stage to MD-stage let consider the
following two simple analytically solvable models with f2 = 1.

Let the Universe be filled by gas of noninteracting particles with mass m.
The number density of these particles at moment ¢, iz equal to N, and their energy
is By = (p? + m?)}/2. The energy density at the moment corresponding to the scale
factor a is

1/2

o= (&Y (m= " ?};‘;‘i) (0.22)

The account is taken of the change of the number density because of the rise of the
volume and the red shifting of the momentum due to expansion. The latter will be
more clear after acquaintance with the next section. Subsatituting this expression
into eq. (0.6) we find the expansion law:

t=1, [(;}1’; + 1)81[4 - 1] (0.23)

where 7, = (mpr/m?)(p?/6x Ny )2 is the characteristic time scale of the transition
from one stage to another. Note that it does not depend on the moment ¢; when the
initial conditions are fixed because the ratio (p*/N) does not change in the course
of expansion.

The Hubble parameter in this model is

g _2_ (4Pt (0.24)

H
3t +n el

This model approximately describes the Universe expansion when the energy
density is dominated by massive neutrinos. Of course the energy of a neutrino js not a
constant quantity but has the Fermi distribution with a decreasing during expansion
temperature (see below). Nevertheless the results obtained are approximately valid
if By is the average neutrino energy {E;) = 2.7E and N, is their number density,
Ny %5 0.0972 (all for T 2» m). This results in the following value of 7,



1, & 3.4mpy/m? = 3 - 10" sec(10eV/m, ) (0.25)

At t = 7, the scale factor differs from its contemporary value by
7.+ 1 = a(ty)/a(n) = (tu/n.) P =~ 10%(m, /10eV /2 (0.26)

This justifies the used above assumption that § =1 at t =7,.

Let us consider now another model when the matter consists of two compo-
nents: massless particles (photons) with energy density p, and nonrelativistic ones
(baryons) with energy density p,,. It is assumed that initially at moment t = #,
pm/pr = € € 1t = t; and as before that 2 = 1. Equation (0.6) also can be
integrated and the expansion law is of the form:

{1 [% + % (1 + %)m - (1 + ?) m] (0.27)

where | = ay/e, ay = 2¢; is the value of the scale factor at the moment ¢, and
5 = 2lfe = 41, /€%, Tp can be expressed through the ratio of the number densities
of photons and baryons:

75 = 10%sec(mp/1GeV ) (N,/10°Ng)? (0.28)

The result evidently does not depend on the choice of t;.

The Hubble parameter is equal to

H =25 (1 + %)m (1)2 (0.29)

4]

Equations (0.27) and (0.28) parametrically determine the function H(#).

In both cases that we have just considered the change of the regime proceeds
rather slowly, the two-component matter becomes nounrelativistic even slower then
the gas of massive neutrinos. '

The considered up to now equations of state p = p/3 and p = 0 do not
exhaust all physically interesting cases of the linear dependence



p=1p {0.30)

This equation leads for ft = 1 to the following expansion law

a ~ i?lahﬂl, (0.51:)
H=2{3tv +1), (0.32)
p = [62G(y + 1) (6.33)

Physical objects which satisfy eq. (0.30) for v =1,1/3,0,(~1/3),(=2/3), and (—1)
are known. {(Why + = 2/3 is absent in this sequence?)

The case ¥ = —1 corresponds to the stiffest equation of state (Zel'dovich,
1961), v < —1 is impossible because this gives the speed of sound larger then
the speed of light. The relation p = p can be realized for a scalar field during
cosmological contraction The cases vy = —1/3 and -y = —2/3 correspond respectively
to the dominance of the chactic gas of cosmic string and domain walls.

Very interesting for what follows is the point v = 1:
p=-p (0.34)

Equations presented above are not applicable in this case. Instead of them we get

H = const, (0.35)
a = agexp(Ht) (0.36)
p=3H*/8xG (0.37)

It is assumed that 2 = 1.

Such regime of expansion arises when the source of gravitational field has
the form



T = PoacGun (0.38)

This quantity in fact coincides with A-term introduced by Einstein into gravity equa-
tions in 1918. Tt is natural to call p,,. the energy density of vacuum. Astronomical
observations give the following bound on the value of the vacuum energy

| puac [< pe % 107 m}y {0.39)

We will see in what follows that a scalar field on the stage of expansion could lead
to the relation p = —g which effectively corresponds to the vacuum energy.

The metric corresponding to the gravitating vacuum (or to nonzero cosmo-
lagical constant) is called the De Sitter metric. Equations (0.35,0.36,0.37) describe
spatially flat De Siiter world. The solutions of the gravity equations for open and
closed De Sitter space are respectively

a(t) = H; 'sinh(H,t), H(t) = H.cth{H,t) (0.40}
a(t) = H; 'cosh(H,t), H(t) = H,th(H,t) (0.41)

where H, = (87Gppac />

In contrast to the Friedman cosmology even the closed world with py.. > 0
expands eternally. This is due to antigravity generated by the space components of
T,.. This statement may need more clarification. We used to say that gravitational
interaction can be only attractive because it is realized by the spin-two particles
and the energy is positive definite. On the other hand the source of gravitational
acceleration, as one sees from eq.(0.5) is not energy density but (p + 3p). This
quantity may have either sign. Still for the objects which are localized in space,
gravitational interactions are always attractive. To see it let us consider a weak
gravitational field and integrate in 3 dimensional space the quantity z"T{;;p. This is
zero since T is conserved. We may integrate this zero by parts and get

f ProiTr, = — f FTi =0 (0.42)

Thus one sees that for local object, for which this integral converges at infinity, the
gpace components of the energy-momentum tensor do not participate in creating
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gravitational field and it is only energy density which gravitates. However if the
integration by parts is impossible gravity may be repulsive. In particular in the
cagse of nonzero vacuum energy p + 3p = —2p < 0 and the expansion proceeds
with positive acceleration in contrast to the normal equation of state when the
acceleration is negative. This may be the source of the initial push which resulted
in the Universe expansion which we see today.

The Universe age for the case when all the mentioned above forms of the
gravitating matter are essential (except for those giving the stiffest equation of state),
can be found with the help of eq. (0.6):

1
ty = H™! f . d::z[ﬂ, + Dz + Q,Iz + ﬂw-":s + Q,,:c" + (1 - ﬂgﬂ)&‘a]””z (043)

where {1, is the relative part of the energy density (in terms of p.} which is taken by
relativistic gas (r}, nonrelativistic gas (m), strings (s), domain walls (w}, and vacuum
{¥). The lower integration limit is determined by positiveness of the integrand.
Evidently in the corresponding limiting cases we get equations (0.16) and (0.20).

The measured values of the Hubble constant, H = 50 — 100 km/sec/Mpc
are compatible with the data on the Universe age, ty > 12 x 10° years for H at
the lower end of the permitted region. The problems worsens with large €2, which is
predicted by inflationary models to be precisely 1 {with accuracy about 1074). So
we must either conclude that the Hubble constant is rather small or that gravity of
vacuum or of other exotic objects is essential m the Universe.

3.2. Problems of the Friedman Cosmology and the Idea of Infla-
tion.

Homogeneous and isotropic cosmological model astonishingly well describes
the observed properties of the Universe. However thie model could be realized only
with a perfect fine-iuning of the initial conditions. With the slow power law ex-
pansion only negligibly small manifold of possible initial states could result in the
observed today Universe. One may think that the initial conditions were realized
accidentally and the question about their origin is not sensible. A decade ago just
this point of view dominated. Now the situation has completely changed. It became
clear that the initial conditions for the Friedman cosmology were realized dynam-
ically and the creation of the universe of our type is a result of the exponential
expansion naturally arising on very early stage of the Universe evolution.



We believe that now the Universe is dominated by nonrelativistic matter
with the equation of state (0.14) and with the energy density p ~ a~%. On the earlier
stages relativistic gas (0.19) with p ~ ¢~ dominated. The change of the regime took
place at the red-shift z = 10 + 10* (see egs. (0.26) or (0.28)). In accordance with
observations the contemporary value of parameter £ does not much deviate from
unity, | © — 1 |= O(1). Correspondingly due to eq. (0.13) the deviation of {} from
unity at the earlier stages should be negligibly small. In particular to the moment
t = 1sec when the temperature of the primeval plasma was T' = 1MeV = 10°K and
z = 3. 10%, the deviation was

| (1sec) — 1 |= 1071% +107%° {0.44)

and at the Planck moment tp; = 10~ 3sec it was

| Qtp) — 1 |=107% =107 (0.45)

This means that in order to survive from the Planck time to the present age t ~
10'%sec the imitial state should be prepared with the fantastic accuracy of about
10-%°. If initially | 2 — 1 }= O(1) the characteristic Universe life-time would be
10~ sec but not 10 sec.

The same difficulty can be illustrated in a different way. The most dis-
tant visible astronomical objects are situated at the distance of the order of ly =
10'0yearsas 3 - 107sec. Going back into the past down to ¢ = tp we see that the
Universe size at that time was about

H{tpe) = %:U ~ 10745 2 10%p; (0.46)

It would be natural to think that the Universe size at the Planck time was also of
the Planck scale. The difference in 29 orders is "slightly” discouraging.

The possibility of reasonable extrapolation to ¢ = tp; might be questioned
but the extrapolation to ¢ = 1sec seems to be perfectly well justified. The weighty
argument in its favor is the agreement with observations of the theory of the pri-
mordial nucleosynthesis which proveeded just at that time. It is very difficult if at
all possible to believe that the accuracy of the fine-tuning of the initial conditions
in the Universe was as good as 107'° or even better. Thus one have to conclude
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that the expansion law in the past differed from the power law (0.15) or (0.21) and
was most probably the exponential one when starting from more or less arbitrary §2
we would come to ) close to unity with exponential accuracy as it is seen from eq.
(0.13). In that sense the exponential expansion in the past is the "experimentally”
established fact. The problem of the extreme fine-tuning of € at the beginning of
the Friedian stage is called

1)the flatness problem. As we have seen it is solved if somewhere in the past
the energy-momentum tensor was dominated by the term of the form (0.38) that is by
effective cosmological term. Of course the real cosmological constant does not change
with time because the covariant T),,-conservation leads to the condition pye. = const
and the contemporary value of py,. is too small (if nonzere) for the solution of the
problems we are interested in. Thus the state of matter which produce the energy-
momentum tensor approximately coinciding with (0.38) should be unstable and
ultimately evolve to the normal state. Such a regime can be realized e.g. by a
scalar field with flat potential or by the real initial A-term somehow compensated
during the later Universe evolution. The adjustment mechanism naturally givea rise
to the time-dependent cosmological term (Dolgov, 1982). Recall in this connection
that vacuum energy in the past could differ from the contemporary value because
of the phase transitions in the primeval plasma when the temperature went down
(Kirzhnits, 1972; Kirzhnits and Linde, 1972). Immediately the question arises why
the vacuum energy is compensated with such a fantastic precision. Thus we come
to the

2).problem of the cosmological constant. In accordance with theoretical es-
timates the change of vacuum energy during the possible phase transitions in the

early Universe is much larger then the upper limit for its contemporary value (0.39).
For example the phase transition in QCD from free quarks and gluons at high tem-
peratures, T > 100MeV, to the confinement phase is accompanied by formation of
e.g. gluonic condensate (Vainshiein, Zakharov, and Shifman, 1978} with vacuum
energy

Pocp &= 10_4 (GGV )4 (0.47)

This is 50 orders of magnitude larger then p,,. at the present time.

The electroweak phase transition from the SU{2) x U{1}-symmetric phase to
the phase with broken symmetry, when the condensate of the Higgs field is formed,
leads to the change in vacuum energy equal to



Apgw = 10%(GeV) (0.48)

If the grand unification models are valid than the analogous phase transition gives

Apgur = 10%(GeV)! (0.49)

Apart from that the quantum zero mode fluctuations contribute into puac.
The contribution of a separate field is infinite and it was usually simply subtracted
out because in the absence of gravity the origin of the energy scale is unessential. The
account of gravity changes the situation and zero mode fluctuations create a problem.
Supersymmetric theories slightly improve the case because in the limit of exact
supersymmetry the contributions of fermionic and bosonic zero modes are canceled
out. This was noted by Zel’dovich (1968) before the advent of supersymmetric
theories. We know however that supersymmetry is not exact and hence the zero
meode oscillations do not canceled out exactly but only down to the terms of the
order of miy, ¢y Where mgy sy is the scale of the supersymmetry breaking. If a global
supersymmetry is spontaneously broken the vacuum energy must be nonzero. In
supergravity a nonvanishing p,,. is not obligatory and one can adjust the parameters
so that it vanishes when the supergravity is broken but the required fine-tuning is
unnatural and should be accurate with the precision of about 10719,

So we see that the changes in the vacunm energy during the Universe evolu-
tion could be 50-100 orders of magnitude larger then the bound on the value of puac
at the present time, It is hard to imagine that the initial value of p.o. Was adjusted
in such a way that the subsequent phase transitions canceled it out with this fantas-
tic accuracy. There must exist a mechanism of the vacuum energy compensation.
We discuss the possible ways of the solution of this central cosmological problem
below and now describe some other, maybe not so impressive, but still essential
cosmological problems.

3) Isotropy and homogeneity of the Universein the Friedman cosmology were

understood as result of the choice of some particular initial conditions the origin of
which was until recently quite mystericus.

4) The horizon problem is close to the problems of isotropy and homogene-
ity and is created by the fact that the background electromagnetic radiation coming
from different parts of the sky looks absolutely the same. Without the dipole asym-
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metry connected with the Earth movement with respect to the background the rel-
ative angular fluctuations of the radiation temperature is smaller then 10~*. On the
other hand the regions in the sky with the angular size smaller then 0.03 is casually
disconnected. Indeed the background radiation stopped to interact with the matter
after the hydrogen recombination at 7' a2 3000K ie. at z, = T,/Ty & 10%. This
corresponds to £, 7 10"*sec from the beginning. Hence the size of the region where
photons could interact in the modern scale is smaller than R, = z.f, &~ 10'%zec.
This is approximately 30 times smaller than the visible size of the Universe. These
arguments show that there should exist a mechanism which had burned all the Uni-
verse simultaneously in the regions which for the usual expansion mechanism could
not exchange the light signals. The discussed below exit from the inflationary stage
gives, as we see, the example of such mechanism.

5) Large scale structure of the Universe means to the galaxies, their clus-
ters, and superclusters on the homogeneous background in the very large scale. It

is assumed that the observed picture was created due to gravitational instability
of initial fluctuations of density. A natural candidate for such inhomogeneities are
quantum field fluctuations. Their amplitudes and the characteristic scales are how-
ever too small to create the structure in the usual regime of expansion. It can be
shown that inflationary regime gives rise not only to the fluctuations with sufficiently
large wave length (this is evident) but also to large amplitude of the fluctuations. In
a sense the plan is over fulfilled since in patural models the amplitudes happen to
be too large. Alternative sources of the initial density fluctuations could be domain
walls, cosmic strings, and other topological or nontopological solitons.

In accordance with the theory of gravitational instability the latter is devel-
oped when in the course of expansion nonrelativistic matter becomes dominating
and pressure or free streaming out does not prevent from gravitational clumping.
The onset of instability in usual baryonic matier takes place rather late after hy-
drogen recombination when the radiation pressure becomes sufficiently small. The
obgerved anisotropy of the background radiation in this case puts a very stringent
upper limit on the amplitude of the energy density fluctuations and the time left for
the development of the perturbations up to the cbserved today magnitude proves
to be too short. Theory of the large scale structure formation in the Universe could
overcome this difficulty if along with baryons there existed some other particles
noninteracting with electromagnetic radiation e.g. massive neutrinos. If this is the
case the neutrino mass should be a few tens of electronvolis. However the neutrinos
alone cannot quantitatively describe the observed large scale structure. Fortunately
there are plenty of other candidates for the role of creators of the Universe structure
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e.g. superpartners like gravitino, photino, etc., axion, or some more exotic objects
predicted by the modern proliferation of the particle physics models. One of the
popular today hypothesises is that 70% of the Universe mass is contained in new
heavy (supersymmetric) particles and 30% in light (m = 10 €V) neutrinos. Com-
peting proposals are nentrinos plus vacuum energy, or neutrinos plus astronomically
heavy seeds, and so on.

The new collisionless particles could solve

6)the problem of the hidden mass of the Universe Observations show that
there is a lot of matter in the Universe (about 90%) which is not seen. This is the

so called dark matter which makes the hidden mass. It seems practically certain
that the hidden mass cannot be attributed to the usual baryonic matter and be-
sides weakly interacting particles there is only exotic possibility of modification of
gravitational interaction at large distance.

e problem of t On a8 e Universe that is the prob-
lem of existence of matter and the absence of antimatter in the observed world seems
to be settled down now. If particle interactions are charge asymmetric (we know
from experiment that this ia indeed the case) and baryonic charge is not conserved
then in nonstationary situation there should be generated an excess of particles over
antiparticles or vice versa. The sign usually cannot be predicted, but the amplitude
is evaluated to be of the proper order of magnitude,

It is interesting to note in this connection how our attitude to the proton
stability has changed. Earlier it was implicitly assumed that our existence proves
that proton is stable but now the conclusion is just the opposite: our existence proves
that proton is unstable or to be more exact that baryonic charge is not conserved.
Indeed otherwise the baryonic asymmetry would not be generated and the Universe
would be quite different and not saitable for life.

In theories of grand unification together with baryonic charge nonconserva-
tion the existence of magnetic monopoles is predicted. The number density of the
latter in the Universe is calculated to be unacceptably large if the expansion law is
of the standard Friedman form (Zel’dovich and Khlopov, 1978; Preskill, 1979). The
discrepancy between the theory and the observational bounds is about 10 orders of
magnitude. This contradiction creates

8)the magpetic monopole problem.
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Poassibly the list should include also

9)the problem of the space-time dimension. Why D = 4, though any other
D seem possible? Standing on the anthropic principle it is possible to justify D = 4
because life, in our understanding of it, is possible neither in D > 4 nor in D « 4
Still it is more attractive to have the dynamic solution of the problem. Probably
specific classical field configuration which could exist only in D = 4 permit only
three space dimensions to become large.

And at last but not the least there is the most fundamental problem not
only in cosmology but in physics in general:

10} the problem of creation and ultimate fate of the Universe. In popular

lectures this problem is sometimes formulated as Was there the beginning and will
there be the end of the world?” It is difficult to realize that time could be finite, so
psychologically the model of eternal Universe seems more attractive. One possible
model of this kind is the model of oscillating Universe in which expansion and con-
traction phases alternate for infinitely long time. Such a Universe should be closed,
that is {3 > 1. Unfortunately rather general arguments show that in oscillating
universe the entropy should rise due to particle production by gravitational field
near singularity. This would result in the infinite increase of the universe radiua in
the infinite time. Moreover the problem of passing through the singularity remains

open.

Rather popular in the recent years was the idea of the Universe creation
from nothing (Tryon, 1973; Fomin, 1975). There is no contradiction with the energy
conservation law in this process if a closed universe is created. For the latter the
total mass is known to be zero because of the gravitational mass defect. The formal
description of the universe creation resembles the process of the electron-positron
pair production from vacuum by electric field. Still the final theory of the process
is not developed.

It is noteworthy that the created from nothing a closed universe with the
Planck size could reach the present state in a finite number of oscillations because
of the increase of entropy.

Fternally existing universe can be based on the acalar field with infinitely
many decreasing local minima in the potential energy not bounded from below
(Dolgov, 1985). In this model the universe evolution would look as the infinite
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sequence of big bangs with subsequent expansion and cooling down and the next
explosion and so on.

An interesting model of eternal universe has been considered by Linde (1986)
in the framework of the inflationary scenario when the Universe, as a whole, mostly
stays in quantum state and only little pieces of it hecomes classical due to fluciu-
ations of a scalar field which inflates them to a classical size. Though this picture
creates a lot of questions, like the meaning of the quantum space-time and the law
of the evolution of the latter, it may be an interesting alternative to the scenario of
the creation of the Universe from nothing.

The mentioned possibilities are sooner illustrative than serious and now
we do not have a reliable answer to the question about the Universe creation and
probably are far from it. One should remember however that quite recently many
of the problems discussed in this section seemed to be outside the scope of science
and now the beautiful solution has been found based only on the assumption that
at an early stage of the Universe evolution the scale factor exponentially rose with
time, a(t} ~ exp(H,t).

This simple assumption permits to solve problems 1,3,4,8, and to some ex-
tent 5 in a unified way. In this scenario the Universe on the inflationary stage
was exponentially expanding emptiness. All initially existing matter density quickly
tended to zero and the initial conditions were forgotten with exponential precision.
The space became as homogeneous and isotropic as vacuum could be. The param-
eter {2 tended to the closure value in accordance with the law

(2 — 1) ~ exp[(—87 puac/3m i )t] = exp(—Hat) (0.50)

The necessary duration of the exponential stage is given by the condition

H,r>T0 - ln(mp;/T) (051)

where T, is the temperature of the primeval plasma after the vacuum explosion,
reheating, and the transition to the Friedman expausion regime (see below). Condi-
tion (0.51) ensures ! = O(1) at the present time as it is demanded by the existence
of our world. Correspondingly at 7 = 1MeV the condition |  — 1 j< 107 is
satisfied (eq. (0.44)).
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Evidently the inflationary model solves the problem of magnetic monopoles
if the exponential expansion took place after the phase transition at which the
monopoles were formed or if the reheating temperature was smaller then the monopole
mass.

The horizon problem is also naturally solved in the model if the visible now
patt of the Universe was a microscopic casually connected region before the inflation.

For the concrete model of inflationary Universe two problems are essential:

1) Mechanism of inflation or in other words the mechanism of formation and
disappearance of the vacuum or vacuum-like energy.

2) The end of inflation i.e. the transformation of the vacuum energy into the
energy of matter (of elementary particles) and the onset of the Friedman expansion

regime.

No other way to solve the fundamental cosmological problems enurnerated
in this section is known and it seems certain that the Universe have undergone
the exponential expansion stage and thna inflationary cosmology is now a firmly
established part of the standard model. 8till no "no-go” theorems are known and
one cannot exclude future competing proposals. Crucial for the inflationaty scenario
would be an accurate measurement of Q which should be very close to 1 (at least in
the traditional versions of the model).

3.3 Short history of the Universe.
After our Universe has been somehow created we can more or less definitely

describe her subsequent evolution. Most probably initial values of appropriate phys-
ical quantities were close to the Planck values:

tpr =mp 5. 10 Ysec {0.52)
lpp = mp} = 1.5-107%cm {0.53)

PPt =mb s 2- 107GV = 2.5- 10"V GeV/om® = 4 - 10%/crm® (0.54)

The physical mechanism of the initial push which has caused the Universe
expansion was unknown till the recent time. Now it is believed that the observed
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Hubble flow was generated by the antigravity created at the very early stage of the
Universe evolution by the vacuum-like state of matter with the energy momentum
tensor T}y, ~ g, Such energy-momentum tensor induces exponential expansion and
the arguments of subsec. 3.2 strongly suggest that this regime did existed.

The part of the Universe which underwent exponential expansion rose up to
fantastically large size generically much larger than the present-day horizon. The
only form of energy except for real vacuum energy which could survive in this enor-
mously expanding volume is the energy of homogeneous scalar field which could be
the source of inflation. A very important moment in the Universe history is the
end of inflation when the vacuum-like energy of the scalar field is transformed into
the energy of the plasma of elementary particles. Everything that was before that
moment our Universe effectively forgets. The only reminiscences of inflation which
remain are isotropy, homogeneity, flatness, and as we see in what follows small per-
turbations of density and metric. All the relic particles which existed before inflation
disappear. Note however that together with grand inflation which solves the flat-
ness problem there could be shorter exponential stages which probably arese due to
supercooled phase transitions of the first order at later stages.

After inflation was over the primeval plasma of elementary particles quickly
evolves to the thermal equilibrium state. All types of particles with m < T are
produced. An exception may be particles with anomalously weak interactions like
gravitons or gravitinos which possess only gravitational interaction. Their produc-
tion can be rather small and they never come into the equilibrium with the coamic

plasma.,

At some period after inflation there should proceed baryosynthesis resulting
in excess of baryons over antibaryons. It takes place between 10'°GeV and 10°GeV
depending upon the model.

The value of the baryonic charge density puts a limit on the possible entropy
rise due e.g. to supercooling in the phase transitions after the baryosynthesis. Oa
the other hand the phase transition producing magnetic monopoles must take place
before inflation was over 30 that their number density would be acceptably small.

Phase transitions in the primeval plasma is a new feature of the cosmology of
the early Universe which came to cosmology with the advent of spontaneously broken
gauge theories (see sec.Il). The macroobjects formed in these phase transitions like
cosmic atrings or domain walls can have a strong influence on the Universe evolution.



51

Near a phase transition the equation of state is rather complicated and
the expausion law differs from the simple power one. However generically phase
transitions last for a rather short time and the equation of state soon returns to
the usual equation of state of relativistic ideal gas, p = £/3 and a ~ /% It is
also possible that at some stages the energy density was dominated by long-lived
nonrelativistic particles which had got their masses as a result of the phase transition
and the equation of state became close to p < ¢ and 5o @ ~ t2/3,

We believe that there existed the phase transition on the grand unification
acale at T = 101°GeV which has given masses to the gauge X- and Y-bosons (lep-
toquarks). The order of this phase transition is not known. It depends on the Higgs
sector of the theory and could be both of the firat and of the second order. In the
first inflationary models the theory was specially chosen so that the grand unifica-
tion phase transition was of the first order with a strong supercooling ensuring a
long dominance of the vacuum-like energy.

Going down to the temperatures about 10?GeV we come on a more firm
ground of the particle theory confirmed by experiment. In this temperature range
the tramsition to the nonsymmetric phase of electroweak interactions takes place
and W and Z become massive. The order of the electroweak phase transition is
not known. Most probably it is the second order (especially if minimal standard
mode! with a heavy Higgs boson is true), but more work is necessary to clarify the
situation. This issue is of primary importance for the electroweak baryogenesia.

And last but not the least at T = 100--200MeV there is the phase transition
from the phase of free quarks to the confinement phase. Because of the large value of
the coupling constant at this energy scale the theory of the phase transition proves
to be very complicated and its character is unknown. The restriction on the entropy
increase demands that it should be of the second or of weakly first order.

At T < 100MeV the primeval plasma consists only of photons, e~, e, and
of three(?) types of nentrinos and a small admixture of nucleons and possibly some
other (massive) relic particles which are yet unknown.

At T = 3 + 5MeV peutrinos stops to interact with the plasma and freely
propagate in the Universe. Note however that the high energy neutrinoa decouple
later and this results in the distortion of the neutrino spectrum.

When the temperature drops below 1Mev the weak (n — p)-transitions are



52

switched off and the ratio n/p freezes. The value of the latter determines the light
element abundances which have been produced during primordial nuclecaynthesis.
Starting from this moment the predictions of the standard cosmological model is
quantitatively checked by observations.

Primordial nucleoaynthesis proceeds at the temperatures about 100KeV
when the light elements such as 2H, 2H, 3He, *He, ' Li, and s0 on are produced. The
chain of reactions leading to the formation of these nuclei is well determined. The
first calculation of light element production has been performed by Wagoner, Fowler,
and Hoyle (1967) and the results are in beautiful agreement with observations. This
agreement does not permit any considerable modification of the standard scenario
and serves as a sensible method to get an information about elementary particles
from cosmology. In particular hence the celebrated Schwartsman (1969) limit on the
number of neutrino species follows, Recently new more advanced numerical codes
for the calculation of the primordial light element abundances were worked out and
their production is calculated in detail. These calculations in particular presents a
strong evidence in faver of nonbaryonic invisible matter in the Universe.

The next important step is the transition from RD-stage to MD-stage. In
accordance with estimates of subsec. 3.1 it takes place at ¢ = 10'! + 10'%sec and
correspondingly T = (3 + 1) - 10°K. Slightly later when the temperature drops
down to 3000K the hydrogen recombination takes place, e~ + p — H®, and the
plasma becomes transparent to the background radiation. ;From that time the
light pressure does not prevent from gravitational clumping of baryonic matter and
the epoch of the formation of protostar and protogalaxies begins. Gravitational
instability of invisible matter (e.g. of massive neutrinos) should manifest itself earlier
with the onset of MD-stage and gives rise to the formation of first gravitationally
bound structures. Without these seeds, which are necessary for the subsequent
capture of the usual matter, the theory of large scale structure formation in the
Universe encounters considerable difficulties. After protostructures were formed
they attracted the usual matter and ultimately the beauty of stars and galaxies,
which we see now, was shining on the sky.



Chapter 4
Baryogenesis

Astronomical observations show that at least in our neighborhood antimatter in the
form of antiprotons, antinentrons, and positrons is practically absent and that most
probably all the visible part of the Universe consists of matter. Earlier the excess of
matter was considered as one of initial conditions of Friedman cosmology and the
value of the ratic of baryonic charge density to number density of photons

Bo = (Na/Ny) 3107 (0.1)

was believed to be one of fundamental cosmological constants imposed "externally”.

Now the situation has completely changed. The mechanisma that can pro-
duce particle or antiparticle excess from initially charge symmetric state are found.
The value of this excess can be expressed through characteristic parameters of mi-
crophysics. The history of the problem goes up to the paper by Sakharov (1967)
where the basic ideas of baryosynthesis in the Universe have been formulated. Af-
ter the paper by Kuz'min (1970) who considered slightly different model the sub-
ject was forgotten for several years because at that time no theoretical reasons for
baryon nonconservation was known. The advent of grand unification models cre-
ated the necessary basis and later the works by Ignatiev, Krasnikov, Kuz'min, and
Tavkhelidze (1978) and by Yoshimura (1978) gave rise to the stream of papers on
baryogenesis which has not dried up until now. Moreover recent years showed a
burst of activity on the subject connected with the possibility of baryogenesis on
electroweak scale. For acquaintance with early papets on the subject the reviews by
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Dolgov and Zel’dovich (1981) and by Kolb and Turner {1983) can be helpful. Up
to date description of the issue can be found in the review papers by Dolgov (1992)
and by Cohen, Kaplan, and Nelson (1993).

Three principles of baryogenesis formulated by Sakharov are the following.
First, it is evident necessity of nonconservation of baryons. Otherwise the difference
between the numbers of baryons and antibaryons that is baryonic charge cannot
change. Second, a viclation of symmetry between particles and antiparticles seems
also necessary. The transformation of particles into antiparticles is called charge or
C-conjugation and strong, electromagnetic and gravitational interactions are invari-
ant with respect to it. Weak interactions permit to distingnish between particles and
antiparticles since they break C-parity with relative probability of the order of one.
However breaking of C-parity is not enough for generation of excess of particles over
aatiparticles in the Universe. If the interactions are invariant with respect to the so-
called combined inversion CP when ¢harge conjugation is accompanied by the space
reflection then no excess of particles over antiparticles can be generated. This state-
ment ia practically evident because in this case the probability of any process with
particles is equal to the probability of the mirror reflected process with antiparticles
and so after averaging over space and particle spins total probabilities of processes
with particles and antiparticles coincide. However it is observed experimentally that
CP-invariance is broken. Because of C- and CP-violation the probability of charged
conjugated processes ¢ — f and i — f are different, I'i; # I';;. Though the mech-
anism of the breaking is not known, there are plenty possible thecretical models
which may explain the phenomenon. Gur world probably exists only thanks to this
small violation of CP-symmetry.

The observed in experiment violation of C, P, and CP well illustrate the
validity of the principle "everything that is not forbidden is permitted” in physics.
Theory prescribes only invariance with respect to the combined action of three
operations C, P, and T where T is the operation of time reversal which interchange
initial and final states and change the signs of velocities and angular momenta of
particles. CPT-invariance is a consequence of general principles of the theory such
ag Lorentz-invariance, analyticity, and positive definiteness of energy (see review by
Grawert, Luders, and Rollnik, 1959). CPT theorem ensures some symmetry between
particles and antiparticles in particular the equality of particle-antiparticle masses
and for unatable particles the equality of their total life-times.

The third necessary condition for generation of charge asymmetry is viola-
tion of thermodynamic equilibrium (Okun and Zel'dovich, 1976). As is well known
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(see e.g. Landau and Lifshits, 1964) equilibrium distribution functions are deter-
mined only by energies and chemical potentials of particles. I the particles do not
posses any conserved charge their chemical potential in equilibrium vanishes and the
numbers of particles and antiparticles are equal. Note the role of CPT-theorem in
this statement: it demands the equality of particle-antiparticle masses. Thus start-
ing from a state with nonzero value of (B} one comes as a result of thermolization
to {B) = 0 if baryonic charge is not conserved. This is not so if there are conserved
combinations of charges including B. For example in S¥/(5)-models of grand unifi-
cations the difference (B — L) is conserved (L is leptonic charge). Because of that
{B) does not vanish even in the thermal equilibrium state if initially {(B— L)}o # 0.
The value of {B) in this case depends on the relation between the temperature and
the masses of quarks and leptons. In particular for T > m, (B.,}) = (B — L)o/2. As
a result the baryon asymmetry depends on initial conditions. If however inflation
preceded baryosynthesis, initial values of all conserved charges must be zero.

After we have explained the necessity of these three conditions for the gen-
eration of the asymmetry, let us note that the subsequent theoretical development
showed that neither of them is obligatory. Baryogenesis may proceed with C and
CP invariant theory in thermal equilibrium, and even if baryonic charge is strictly
conserved in particle interactions. For the discussion of these counterexamples see
the review paper by Dolgov (1992).

There are several qualitatively different scenarios of baryogenesis described
in the literature starting from the classical one based on nonequilibrium decays
of heavy particles, to more elaborate scenarios like squark condensate decay, or
nonperturbative processes in electroweak interactions, and more exotic ones like
concealment of conserved baryonic charge in evaporating black holes, or generation
of baryonic excess due to CPT-violation or by external time-dependent field. The
last ones are possible in thermal equilibrium.

It is noteworthy that inflationary model with a considerable expansion can
be realized ounly if baryonic charge is not conserved. For successful solution of the
flatness and horizon problems duration of inflationary stage should be sufficiently
large, Hrt; = 65 — 70. If baryonic charge were conserved it would be diluted during
inflation by a huge factor €*'% — ¢'% a3 follows from the covariant law of the con-
servation of baryonic current. For the case of homogeneous and isotropic universe

when space components of the current vanish it has the form

By +3Hjp =0 (02)
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During inflationary stage, when H = const, baryonic charge density decreases as
7% ~ exp(—3Ht) diminishing down to the value 3 . 10~'. Unnatural by itself, the
huge initial value of the baryonic charge density in principle may exist, But nonzero
baryonic charge density implies simultaneously nonzero energy density associated
with it, [nflation could be achieved only if energy density in the Universe is a con-
stant or slowly varying function of the scale factor a. This is not true for the energy
density associated with baryonic charge, pp. It varies as 1/a® for nonrelativistic paz-
ticles and as 1/a* for relativistic ones. ;From the value of g (0.1) we may conclude
that at high temperature stage pg = 10~ %p,,,. It means that the total energy den-
sity could be approximately constant for the period not larger than 6 Hubble times
which is too little for a successful inflation. Thus inflation demands nonconservation

of baryons.

The idea of baryogenesis emerged from the observations that the Universe
at some distance scale Ig around us is practically 100% charge asymmetric with
beryon number density very much exceeding that of antibaryons, Nz 33 Ng. The
magnitude of the asymmetry is characterized by the ratio of the baryonic number
density to the number density of photons in cosmic microwave background radiation
(0.1). This small number means in particular that the size of the charge asymmetry
(which is practically 100% now) was tiny at high temperatures, T' > Agep == 100
MeV. At these temperatures antibaryons were practically equally abundant in the
primeval plasma and correspondingly (Ng — Ng/(Ng + Ng) ~ 8 <« 1. Still this
number, though very small, is not easy to obtain and the main goal of theoretical
models is to get this number as large as possible.

There are three important problems related to the acale of the asymmetry
fs:

e 1. What is the magnitude of {57 Is it infinite or, what is practically the same,
larger that the present-day horizon, Ip > Iy ~ 10'° yeara? May it be rather
small, say, like afew x 10 Mpc? In the first case the whole Universe or at
least the visible part ia baryon dominated while in the second case there may
be a considerable amount of antibaryons which can be in principle observed
by their interaction with matter on the boundaries. Still since the distance is
fairly large the gamma-flux from the annihilation would be sufficiently low.

¢ 2. May the Universe be charge asymmetric only in our neighbourhood, never
mind how large it ia {even larger than the horizon), and be charge symmet-
ric a8 a whole? The last possibility is aesthetically appealing since particle-
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antiparticle symmetry is restored on large.

e 3. Is the amplitude of the asymmetry 8 a constant or may it be a function of
space points 3 = B(z,y, z)? The last case corresponds to the so called isocur-
vature density fluctuations which may be very interesting for the atructure
formation in low {t Universe.

Historically first papers on baryogenesis which were based on a well defined
particle physics model were done in the frameworks of the grand unification theo-
ries (for the review and the literature see Dolgov and Zeldovich (1981} and Kolb
and Turper (1983)). Grand unification models present a beautiful extension of the
minimal standard SU/(3) x ST(2) x U/{1)-model (MSM). A strong indication of the
validity of the grand unification is the crossing of all three gauge coupling constants
of supersymmetric extension of MSM at the same point near Egur = 10" GeV.
On the other hand it is rather difficult to believe that there are no new particles
and interactions in the region between electroweak or low energy supersymmetry
scale and grand unification scale, but if the essential quantity is the logarithm of
energy the distance between these two scales is not too big and one may hope that
MSM or supersymmetric version of it is the ultimate truth in low energy physics (up
to Egyr). One more argument in favor of low energy supersymmetry is provided
by cosmology, namely, if one demands in accordance with the theory of large scale
structure formation that the bulk of matter in the universe is in the form of cold
dark matter and assumes that the cross-section of the annihilation of the latter is
given by o = @*/m? then the mass m should be in the region 100 GeV - 1 TeV, It
is just the scale of low energy supersymmetry.

A strong objection against GUT baryogenesis is a low heating temperature
after inflation. It is typically 4-5 orders of magnitude below Egyr. It means that the
GUT era possibly did not exist in the early Universe. A very interesting alternative
to the GUT baryogenesis is the electroweak one (for the review see Dolgov(1992)
and Cohen, Kaplan, Nellson (1993)). Electroweak theory provides all the necessary
ingredients for baryogenesis including baryon nonconservation (see below)} so one
may hope to get some baryon asymmetry of the Universe even in the frameworks of
the MSM. A very interesting question is if it is possible to get the right magnitude
of the asymmetry in MSM or baryogenesis demands an extension of the minimal
model.

One may say in support of the second possibility that cosmology already
demands physics beyond the standard model. It should be invoked for realization of
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inflation, for the generation of the primordial density perturbations, for nenbaryonic
dark matter, etc. A drastic change in the standard physics may be necessary for the
solution of the cosmological term problem. {There is a hope however that it may be
solved by infrared instability of quantum gravity in De Sitter background, see e.g.
Ford(1985), Tsamis and Woodard(1993), Dolgov, Einhorn, and Zakharov (1994).)
So we have already a strong evidence that there is physics beyond the standard modet
and thus baryogenesis should not be confined to the MSM. Still the possibility of
realistic baryogenesis in the minimal model is exiremely appealing and moreover it
gives the unique possibility to express the magnitude of the baryon asymmetry 8
through parameters of the standard model measured in direct experiments.

Baryonic charge nonconservation in the electroweak theory was discovered
by 't Hooft (1976). It is a very striking phenomenon. Classically baryonic current,
as inferred from the electroweak Lagrangian, is conserved

3lljrnrymic = 01 ' (03)

but the conservation is destroyed by the quantum corrections. The latier are given
by the very well known chiral anomaly associated with triangle fermionic loop in
external gauge field. The calculation which can be found in many textbooks gives

Buibr = Ny (32 :éi 5 ") (0.4)

Here Ny is the number of fermionic flavors, g1, are the gauge coupling constants of
U(1) and SU(2) groups, W and Y are the gauge field strength tensors for SU(2) and
U(1) respectively, and tilde means dual tensor, W = eweBW, 512, The products
of the gauge field strength WW and YY can be written as divergences of vector
quantities,

WW = 8,K} {0.5)

YY = 8,K¢ (0.6)

where

K¥ = Y, Yy (0.7)
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K2 = &oB(W, Wy — %g,w,w,,w,g) (0.8)

Here Y, and W, are gauge field potentials of abelian U/(1) and nonabehan SU(2)
groups respectively. Usually total derivatives are unobservable since they may be
integrated by parts and disappear. This is true for the contribution into K* from
the gauge field strength tensors Y, and W, which should sufficiently fast vanish at
infinity. However it is not obligatory for the potentials for which the integral over
infinitely separated hypersurface may be nonzero. Hence for nonabelian groups the
current nonconservation induced by quantum effects becomes observable.

Because of conditions {0.4,0.5,0.8) the variation of the baryonic charge can
be written as '

AB = NjANgs (0.9)

where Ngg is the so-called Chern-Simons number characterizing topology in the
gauge field space. It can be written as a space integral of the time component of
the vector K*:

2

j Pk (0.10)

_ 5
Nos = 3523

Though Ncsg is not a gauge invariant quantity its variation ANgs = Nes(t)—Nes(0)
is.

In vacuum the field strength tensor W, should vanish while the potentials
are not necessarily zero but can be the so called purely gauge potentials:

W, = —Ei—U(z)a,.U"(z) (0.11)

There may be two classes of gauge transformations keeping W, = 0: one that does
not change Nys and the second that changes N¢s. The first one can be realized
by a continues transformation of the potentials while the second cannot. If one
tries to change Ngs by a continuous variation of the potentials one has to pass the
region where W,,, is nonzero. It means that vacuum states with different topological
charges Npg are separated by the potential barriers. The probability of the barrier
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penetration can be calculated in quasiclassical approximation. The trajectory in
the field space in imaginary time which connects two vacuum states differing by a
unit topological charge is called the instanton. As in the usual quantum mechanics
action evaluated on this trajectory gives the probability of the barrier penetration
(Belavin et al (1975)):

T ~exp (:—:) a2 10717 (0.12)

where ow = g3/4x. This number is so small that it is not necessary to present a
preexponential factor.

Expression (0.12) gives the probability of the baryonic charge violation at
zero energy. We know from quantum mechanics that the probability of the barrier
penetration rises with rising energy. Moreover in the system with nonzero temper-
ature a particle may classically go over the barrier with the probability determined
by the Boltzmann exponent, exp(— E/T). This analogy let one think that a similar
phenomenon may exist in quantum field theory so that the processes with baryonic
charge violation are not suppressed at high temperature. One should not of course
rely very much on this analogy since there may be a serious difference between
quantum mechanics which is a system with a finite pumber of degrees of freedom
and quantum field theory which has an infinite (continuous) number of degrees of
freedom. Still in a detailed investigation of this phenomenon convincing arguments
have been found that baryonic charge nonconservation at high temperature may be
strong and that baryogenesis by electroweak processes may be possible.

The first paper where this idea was seriously considered belongs to Kuzmin,
Rubakov, and Shaposhnikov (1985) (for the earlier papers see review by Dolgov
(1992)). They argued that the probability of baryonic charge nonconservation at
nonzero T is determined by the expression

T ~ exp (‘T) | (0.13)

where Uiy, i8 the potential energy at the saddle point separating vacua with different
topological charges. The field configuration corresponding to this saddle point is
called ephaleron. It was originally found by Dashen, Hasslacher, and Neveu (1974)
and later rediscovered by Manton (1983). In the last paper the relation of this
solution to the topology changing transitions and baryonic charge nonconservation
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waa clearly understood. Quantum mechanical analogue of the sphaleron is a single
point in the phase space, i.e. the position of particle sitting at the top of the barrier.
The energy of the sphaleron is

2Mw ()

Unae = Ulbmiern(e)) = 22 7 (2] (0.14)
where ) is the self-interaction coupling constant of the Higgs field, f is a function
which can be calculated numerically, f = O(1), and My is the mass of the W-boson.
At zero temperature 2My faw =5 10 TeV. However at high temperatures close to
the electroweak phase transition the Higgs condensate is gradually destroyed and
the height of the barrier decreases together with the mass of W-boson M3 (T) =
M2, (1 — T*/T?) (see Kirzhnits, 1972 and Linde, 1979) where T. = O(1TeV —
100GeV} is the critical temperature of the transition. Thus one may expect that

the processes with baryonic charge nonconservation ate indeed unsuppressed at high
temperatures.

The situation is not so simple however and there are a few problems which
should be resolved before a definite conclusion can be made. They mostly stem
from the difference between finite dimensional system like quantum mechanics and
infinitely dimensional field theory. The first question is what is the probability of the
processes with the change of topology in the gauge field space. Such processes pro-
ceed in presumably multiparticle collisions through formation of the classical field
configuration with the coherent scale which is much larger than inverse tempera-
ture. If these processes are not fast enough the sphalerone may be not in thermal
equilibrium and possibly far below the equilibrium so that the expression (0.13)
would not be applicable. At the present day we do not know a reliable analytical
way to address this problem. Numerical simulation of the analogous problem made
in 141 dimensions by Grigoriev and Rubakov (1988) showed that the creation of
soliton-antisoliton pairs are indeed fast enough to maintain the equilibrium value
and this is one the strongest arguments in favor of efficient baryon nonconservation
in electroweak processes. However such processes in one dimensional space may
proceed much easier than those in three space dimensions simply because in D = 1
the change of topology means just a jump from one constant value of the Higgs field
to another while in D = 3 much more fine tuning in every space point is necessary.
Unfortunately numerical simulation in 3 + 1 case is much more difficult and corre-
spondingly much less reliable. So strictly speaking the probability of the sphaleron
transitions is not known and a better understanding of it is very much desirable
though it seems plausible that they are not too much suppressed so that thermal
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equilibrium with respect to the topology changing transitions was achieved in the
early universe.

Another question related to the probability of the processes with AB #£ 0 is
what is the entropy of the sphalerons or in other words what is the preexponential
factor in expression (0.13). This factor characterizes the width of the potential near
the saddle point in the directions orthogonal to the trajectory over potential barrier
and was calculated by Arnold and McLerran (1987). With this factor taken into ac-
count the probability of electroweak processes with baryonic charge nonconservation
in the phase with broken electroweak symmetry can be evaluated as

Tap _ o Mw(T)\ ~120Mw (T)/T
a2 _ 10 ( AL (0.15)

where H is the Hubble parameter characterizing the rate of the Universe expansion.

At temperatures above electroweak phase tramsition the rate of baryonic
charge nonconservation was given by Arnold and McLerran (1987) and by Khleb-
nikov and Shaposhnikov (1988):

PAB o Q‘t‘pT (016)

Recall that expressions (0.15) and (0.16) are valid only if sphalerons are in thermal
equilibrium. If this is true then Fap/H » 1 at high temperatures and then abruptly
falls down with falling temperatures. Thus processes with baryonic charge noncon-
servation are in equilibrium at high T and at some point are instantly switched
off. Thus any preexisting baryon asymmetry would be washed out and a new one
cannot be generated. This conclusion can be avoided however if deviations from
thermal equilibrium existed at the time when baryonic charge nonconservation was
still effective. This can be realized in particular if electroweak phase transition is of
the first order. However it is still an open question what is the type of the phase
transition depending in particular on the value of the Higgs bosor mass.

One more comment may be in order here. We spoke before only about
baryonic charge nonconservation. In fact electroweak interactions break equally
baryonic and leptonic charges so that (B — L) is conserved. With this correction
in mind all the previous statements remain true with the substitution of (B + L)
instead of B.
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Thus the following logical possibilities exist for the electroweak baryogene-
sis{we simply enumerate them here and discuss in some more detail giving recent
references below):

o L. Change of the field topology is suppressed in three-dimensional space. Sphalerons
are never abundant and electroweak nonconservation of (B + L) is ineffective.
In that case we should return either to GUT baryogenesis or to some other
more recent proposals described in review paper by Dolgov {1992).

e IL. Sphaleron transitions are not suppressed above and near the electroweak
phase transition and so {B+ L) is strongly nonconserved at these temperatures.
If this is true the following two possibilities are open:

e IL1. The electroweak phase transiticn is of the second order and so the baryon
nonconserving processes, which were with a very good accuracy in thermal
equilibrium above the phase transition, would be instantly completely switched
off below it. In this case any preexisting (B + L) would be washed out and we
again meet two possibilities:

¢ la. The observed asymmetry might arise from an earlier generated (B — L)
either by (B — L) nonconserved processes which exist e.g. in higher rank
graod unification groups or by lepton charge nonconservation in decays of
heavy Majorana fermion as was proposed by Fukugita and Yanagita (1986}.

e 1b. Baryogenesis should take place at low energies below electroweak scale
which for sure demands new low energy weak physics.

e [1.2. Electroweak phase transition is firat order so thermal equilibrium was
strongly broken when both phases coexisted. If this is the case (B + L)-
asymmetry could be generated in electroweak processes at temperatures near
1TeV. An important subdivision in this situation is:

» 2a. The standard model iz able to give a correct magnitude of the baryon
asymmetry of the Universe 50 that baryogenesis does not demand any physics
beyond the minimal standard SU(3) x SU(2} x U(1)-model (MSM).

¢ 2b. An extension of the minimal standard model is necessary. This is not
well defined and may include an introduction of additional Higgs fields (like
in supersymmetric versions), considerable CP-violation in the lepton sector,
CP-violation in strong interaction, etc.



The essential quantity which determines the character of the phase transition
in the minimal standard model is the magnitude of the Higgs boson mass. For a
large value of the latter the phase transition is second order and for a small one it
is first order. To illustrate this statement let us consider the following temperature
dependent effective potential for the Higgs field ¢ (temperature dependent terms
appear due to interactions of the field ¢ with the thermal environment of the cosmic
plasma):

U(¢,T) = m*(T)¢*/2 + (A6*) In(¢*/o?) /4 + HT)6° + ... (0.17)

Notations here are selfexplanatory. The temperature dependence of the effective
mass is roughly speaking the following (7"} = —m3 + AT? where the constant A
is usually positive. (It ie positive in MSM.) Logarithmic dependence on ¢ came from
one-loop quantum perturbative corrections to the potential. At high temperatures
the potential has the only minimum at T = 0, vacuum expectation value of the
¢ i3 zero, and the electroweak symmetry is unbroken. At smaller temperatures a
deeper minimum is developed at nonzero ¢ and mass of the field near this mini-
mum is m¥, # 2m? (we neglected here logarithmic terms in U7). One sees that the
larger is m3 (and correspondingly the physical mass m¥) the easier is the phase
transition. There is no consensus in the literature about the value of my separating
first and second order phase transitions. While earlier perturbative calculations in
the MSM by Shaposhnikov (1987) give a rather small value my == 45 GeV, it was
argued that higher loop effects are essential (Dine et al (1992), Arnold and Espinosa
(1993), Barnasco and Dine (1993)). Moreover since thermal perturbation theory for
nonabelian gauge fields suffers from severe infrared divergences (see Linde (1979)),
nonperturbative effects might be important acting in favor of the first order phase
transition with higher my (Shaposhnikov (1993)). For a more detailed discussion
and list of references see papers by Cohen, Kaplan, and Nelson (1993) and by Far-
rar and Shaposhnikov (1993a). Hence we cannot make any rigorous conclusion now
about the nature of the electroweak phase transition though it seems probable that
MSM with the existing lower experimental bound on the Higgs mass my > 62 GeV
given by LEP favors second order phase transition while in extended models with
several Higgs fields the transition might be first order.

Even if the electroweak phase transition in MSM is first order the generated
asymmetry is expected to be very small. It is connected with a strong suppression of
CP-violating effects at high temperatures. CP-breaking in the MSM is created by the
imaginary part of the quark mass matrix (Cabibbo-Kobayashi-Maskawa matrix). If
there are only two quark generations the imaginary part is not observable because the
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phase may be absorbed in a redefinition of the quark wave function. The statement
remains true with more quarks families with degenerate masses because the unit
matrix is invariant with respect to unitary transformations. One can see that the
minimum number of quark families for which the imaginary part is observable is
three with different masses of quarks with the same value of electric charge. (If
we believe that there is no extension of the standard model then the necessity of
CP-violation for the generation of the charge asymmetry of the Universe justifies
the existence of at least three fermionic families.) Moreover the amplitude of CP-
violation is proportional to the mixing angles between different families because if
the quark mass matrix and the kinetic term in the Lagrangian are simultaneously
diagonal then the phase rotation would not change them. By these reasons the
amplitude of CP-violation in MSM is suppressed by the factor (whlch is called the
Jarlskog determinant):

A_ ~ sin 83 sin 33 sin 83 sin cp(m? — m2)(m? — m?)
(m} — m)(mi — ml)(mj — m3)(m} —md)/E"? (0.18)

Here 8;; are mixing angles between different generations and ¢p is the CP-odd phase
in the mass matrix. The product of sin's of these quantities is about 10~% ~ 10~%,
E ia the characteristic energy of a process with CP-breaking. In the case considered
when the temperature of the medium is above 100 GeV, E is of the same order of
magnitude. Correspondingly one should expect that baryon asymmetry in MSM
should be of the order of 1020,

This conclusion was questioned recently by Farrar and Shaposhnikov (1993a,b).

They argued that flavor dependent temperature corrections to the quark masses in
the vicinity of the domain wall where the expectation value of the Higgs field is
changing nonadiabatically, may drastically enhance efficiency of the electroweak
baryogenesis. This effect is especially pronounced at the low energy tail of the
quark distribution in the phase space. As a result the value of the baryon asym-
metry may be close to the observed one even in the minimal standard model. This
very interesting proposal was however strongly criticized recently.

Despite all the attractiveness of the possibility of effective baryogenesis in
the MSM it should be excluded if the experimental lower bound on the Higgs boson
mass proves to be above the value necessary for successful first order phase transition.
This seems rather probable now and the models with several Higgs fields are possibly
the next best choice. They may give a larger CP-violation and what’s more in these
models both experimental and theoretical bounds on the Higgs boson mass are much
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less restrictive.

The generic feature of all scenarios of electroweak baryogenesis is a coexis-
tence of two phasea in one of which baryonic charge is strongly nonconserved, the
corresponding reactions are well in equilibrium, and no asymmetry can be generated,
while in the second phase baryonic charge is practically conserved and the asym-
metry also cannct be generated though by an opposite reason. So the only place
where baryon asymmetry may be produced are the boundaries between the phases,
The outcome of such a process strongly depends upon the interaction between the
high temperature cosmic plasma and the domain walls and in particular upon the
velocity of the wall propagation in plasma. These problems are addressed in several
papers (for the recent ones see e.g. Lin, McLerran, and Turck (1993) and Huet et
al (1993)) but still more work in this field is desirable.

In the case if the phase transition is second order, baryon asymmetry could
not be generated by electroweak processes but, if sphalerons are effective, the latter
may be very good for erasure of any preexisting ( B+ L)-asymmetry. A nonzero initial
(B — L);-asymmetry is conserved by electroweak interactions and the subsequent
sphaleron processes would result in equel baryon and lepton asymmetry By = Ly =
(B ~ L);/2. Assuming that this is indeed the case one can derive a bound on the
strength of { B — L}-nonconserving interactions at lower temperatures when (and if)
(B+ L)-erasure i3 effective. (One should keep in mind however that all these bounds
are valid only if there is no baryogenesis at electroweak or lower temperature range.)
If the rate of (B +L)-nonconserving sphaleron transitions is given by eqs.(0.15, 0.16),
the sphaleron processes are in equilibrium in the temperature range

102 — 10® < T < 10" (GeV) (0.19)

For successful baryogenesis the processes with { B— L)-nonconservation should not be
in equilibrium in this range. This idea was first used by Fukugita and Yanagita (1986,
1990), who proposed the model of baryogenesis through the decay of heavy Majorana
fermion, to put a bound on the Majorana mass of light neutrinos, mps(v) < 50 KeV.
Neutrinos with a larger Majorana mass together with sphalerons would destroy
both baryon and lepton asymmetry. The assumption that baryogenesis proceeds
through transformation of an initial (B — L}-asymmetry into B-asymmetry permits
to deduce in some cases more interesting bounds on e.g. L-nonconservation than
that following from direct experiments. There are too many possible forms of the
interaction and theoretical models giving rise to them so that their more detailed
description is outside the scope of the present talk and one should be addressed to
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original literature on the subject. In this respect the lectures by Olive (1994) on
big-bang baryogenesis would be very helpful.

Now I would like to turn to some more exotic cases. The first one is a
possibility of a large lepton asymmetry together with a normal small baryon asym-
metry. Though the data gives a rather accurate value of # (within an order of
magnitude), the value of the lepton asymmetry is practically unknown. The best
limits follow from the primordial nucleosynthesis which permits muonic and taonic
lepton asymmetry close to unity while electronic lepton asymmetry cannot exceed
1% (see Dolgov (1992) for the list of references). The bound on the chemical po-
tential associated with electronic charge is stronger because it would directly shift
proton-neutron equilibrium in weak reactions like n + v, ++ p+ ¢~, while v, and v,
influence n/p-ratio only through the total energy demsity. Thus even in the most
restricted case the value of lepton asymmetry may be as large as 1072,

A large lepton asymmetry could only be realized if the sphaleron processes
were not effective or if the asymmetry was generated below electroweak scale, Even
if this is true, the majority of models naturally give L =5 B but there are some
examples permitting L ;» B (see Dolgov and Kirilova (1991) and Dolgov (1992)).
In this case we would have at our disposal an extra free parameter for the theory of
primordial nuclecsynthesis, namely the chemical potential of leptons. What’s more
the characteristic scale of spatial variation of the leptonic charge density Iy might
be much smaller than {p and if the former is in the range [, < Ip < Iy one may
observe that by spaiial va.rmtlon of the abundances of light nuclei and in particular
of *He.

The relatively strong isocurvature fluctuations in leptonic sector with a pos-
gibly nonflat spectrum may be also interesting for the theory of the large scale
structure formation with a single dominant component of hot dark matter. Usu-
ally one considers isocurvature perturbations in baryonic sector which are stronger
bounded by the isotropy of the cosmic microwave background.

Returning to the isocurvature fluctuations in baryonic sector one may find
plenty baryogenesis scenarios (see Dolgov (1992)) providing very interesting pertur-
bations with the spectrum varying from the flat one to that having 2 prominent
peak at a particular wave length. The last case corresponds to a periodic in space
distribution of baryonic fnatter. It may be naturally realized if three rather innccent
assumptions are satisfied:



e 1.There exists a complex scalar field ¢ with the mass which is small in compar-
ison with the Hubble parameter during inflation. The latter may be as large
as 10! GeV so one does not need a really light scalar field.

o 2. The potential of the field ¢ contains nonharmonic terms like A[$[*.

e 3.A condensate of ¢ was formed during inflationary stage which was a slowly
varying function of space points.

If these conditions are fulfilled then it can be proven (for the details that the distri-
bution of baryons in the Universe would be in the form:

——
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(0.20)

where i is an arbitrary unit vector. The scale I of the fluctuations is given by the
exponentially stretched Compton wave length of ¢ and could easily be as large as
100 Mpc as was observed by Broadhurst et al (1990). An interesting picture emerges
if No = 0 and the Universe consists of alternating baryonic and antibaryonic layers.

Another unusual picture of the Universe, the so called island universe model
may be realized with the specific though not too complicated model of baryogenesis
{Dolgov et al 1987). In this model our Universe is a huge baryonic island with
the size large or about 10'® years (or z = 5 - 10), while floating in the see of
dark matter which is more or less uniformly distributed. There are two interesting
features of this model which may be relevant to the structure formation. First,
the background radiation comes to us from the baryon empty regions so that the
fluctuations in its temperature is not directly related to the density perturbations
inside the island. Second, our noncentral position inside the island would give rise
to intrinsic dipole, d ~ 10~3, in the angular distribution of the microwave radiation
which is not related to our motion. The quadrupole asymmetry in this case would
be rather small, ¢ ~ d® ~ 107% It may make easier structure formation in the
cold dark matter model. Without intrinsic dipole and with the flat spectrum of
perturbations more complicated models of the structure formation are necessary,
like e.g. a mixture of hot and cold dark matter or a model with cold dark matter
and nonzero vacuum energy (cosmological constant). Both these models demand
some fine tuning which is not well understood today. The first one needs the energy
density of hot and cold dark matter to be the same within the factor of 2 while
the other demands p,,. which is normally time independent constant to be close



today to the critical energy density which is time dependent, p. ~ m#p,/t*. The
latter may be explained if the smallness of the cosmological constant is ensured by
the so called adjustment mechanism (for the review see Weinberg (1989) or Dolgov -
(1989)). Though these two possibilities are more conservative than the island model
atill they are not the most economic ones. Proliferation of the universe components
from the purely baryonic universe to the mixed baryonic and hot dark matter or
later on to baryonic and cold dark matter and now to the mixture of all three of them
(baryonic+cold+hot) with close energy densities is rather mysterious. On the other
hand there are stable neutrinos which are very likely to be massive and it is also
very plausible that there is supersymmetry in particle physics so that there should
be a stable heavy particle. These two are perfect candidates for the hot and cold
dark matter (what’s more we may have now dark solar size objects in galaxies) so
that it would be only natural that these particles participates as building blocks of
the Universe. The unresolved quesiion is their interaction strength which provides
very different number densities and similar mass densities for the particles of hot
and cold dark matter.

One may try to make a cosmological mode] assuming that the only massive
stable particles in the Universe are protons and electrons and all the dark matter
is made of the normal baryonic stafl. To do that one has to develop a scenario in
which baryogenesis proceed much more efficiently in relatively small space regions
giving # = 1 — 0.01 while it goes normally outside {Dolgov and Silk (1993)). The
regions with that huge baryon number density mostly form black holes with the
mass distribution

dN . M
P A (—‘ﬂn E) (0.21}

Parameters 4 and My cannot reliably found in the model but one reasonably expect
that ¥ = O(1) and My is close to the solar mass. These black holes might be the
objects observed in the microlensing observations reported here. If there are no
other massive stable particles one has to build a theory of the structure formation
with these black holes which behave as normal cold dark matter. At the tail of
the distribution in mass there should be very heavy black holes with masses like
108 — 10? solar masses which may serve as seeds for the structure formation. Still
tilted spectrum of the initial perturbations may be desirable if only cold dark matter
15 permitted.

Conclusions to this lecture reflect to a large extend my personal opinion
and may not be shared by everybody or not even by the majority.
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¢ I. The best choice for the baryogenesis scenario is the electroweak one and
in its framework the one based on the minimal standard model is the most
appealing. The problems with the electroweak baryogenesis are the unknown
probabilities of three dimensional reactions with classical field configurations,
which may question the scenario as a whole, and the type of the electroweak
phase transition. The knowledge of the value of the Higgs boson mass could
be of great help here.

e IL If not MSM the low energy SUSY is the next best choice.

¢ [II. If electroweak interactions destroy but not generate baryon asymmetry
(like e.g. in the case of the second order phase transition), a very interesting
posaibility is baryogenesis through leptogenesis. One needs to this end a heavy
Majorana fermion with mass around 10'? Gev (plus-minus a few orders of
magnitude) and correspondingly a new physics beyond the standard model.

¢ IV. A very low temperature (below the electroweak scale) baryogenesis is not
excluded but there is no natural particle physics model for that.

o V.Majority of models give lepton and baryon asymmetry of approximately the
same magnitude but one may find scenarios giving £ » B with interesting
consequences for the primordial nucleosynthesis.

o VL. A better understanding of baryogenesis may be of interest for the theory
of the large scale structure formation in particular because in the process of
baryogenesis isocurvature density fluctuations with a complicated spectrum
might be created.
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Chapter 5

Thermodynamics of elementary
particles in the expanding
Universe

The Universe expansion evidently means that the matter density was higher in the
past. Higher were also the energies of separate particles because their momenta are
redshifted inversely proportionally to the scale factor p ~ a~! (the wave length of a
free particle rises with all the distances as the scale factor, A ~ ¢). Thus the closer
to the beginning was the Universe the higher and denser was the matter and the
higher were the energy of interacting particles in the primeval plasma. Studying the
history of the early Universe one can get important information about the properties
of elementary particles.

The derivation of the cosmological bounds on the particle properties is based
to the large extent on the remarkable fact that the matter in early the Universe
was mostly in the state of thermal equilibrium. Of course there were essentially
nonequilibrium stages as e.g. inflation or periods when some particular forms of
matter were out of equilibrium but typical state was thermal equilibrium. In usual
thermodynamics of stationary systems the longer is the time which passed from
the beginning the better equilibrium is established. Cosmological case is just the
opposite. Indeed the approach to equilibrium is determined by the relation between
the characteristic reaction rates I' and the expansion rate H = &fa. Though for
the Friedman expansion law H ~ ¢~} the reaction rate I' increases even faster when
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approaching the beginning, t — 0. Indeed for I the following estimate is valid
Ir=N/NmoN (0.1)

where N is the particle number density and o is the characteristic cross section of
their interactions. Since on the relativistic stage N ~ a~* ~ ¢~%2 the reaction rate
exceeds H if the cross section does not decrease with the rising particle energies.
The latter is not true at very high energies but as we see in what follows there is a
considerable interval of time when the equilibrium condition

r>H (0.2)

is satisfied. This is connected with the large value of the Planck mass in comparison
with the characteristic mass parametets in particle physics.

Thermodynamic equilibrium permits to introduce the notion of the particle
temperature T. For sufficiently weak interaction between particles the distribution
of particles in momentum is given by the known Fermi or Bose-Einstein formulae
for the ideal gas (see e.g. Landau and Lifshits, 1964):

ny3(p) = {exp[(E — w)/T] £ 1} (0.3)

Here signs "+’ and '’ refers to fermions and bosons respectively, E = +/p? + m? is
the particle energy, and g is their chemical potential. As is well known, chemical
potentials of particles and antiparticles in equilibrium are equal in absolute values
but opposite in signs:

ptE=0 (0.4)

This follows from the equilibrium condition for the chemical potentials which for an
arbitrary reaction ay +az+ea... = & + 5+ ... has the form

Z Ha; = E Bs; (0.5)

(see below the discussion of kinetic equation) and from the fact that particle and
antiparticle can annihilate into different number of photons, a +a — 27,37,.... In
particular chemical potential of photons vanishes in equilibrium.
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One can see from eq.(0.3) that chemical potential of bosons cannot exceed
their mass. On the other hand we believe that charge asymmetry may be arbitrarily
large. How this may be compatible with the statement that it is proportional to the
value of the chemical potential? We may put this problem in a more impressive form:
assume that there is a gas of massless bosons. Can there be a charge asymmetry
in this gas? The answer is of course "yes” but the result is not proportional to the
value of the chemical potential which should be zero in this case. To ensure the
asymmetry the distribution of bosons should be of the form:

my = (expl(E — m)/T] - 1) + C&(F) (0.6)

Note that we substituted m for the magnitude of the chemical potential. One can
verify that this distribution function is indeed a stationary solution of the kinetic
equation and the arbitrary constant C gives the magnitude of the asymmetry. Its
magnitude is different for particles and antiparticles. This distribution corresponds
to the formation of Bose condensate.

If certain particles possess a conserved charge their chemical potential in
equilibrium can be nonvanishing. It cortesponds to nonzero density of this charge
in plasma. Thus plasma in equilibrium is completely described by temperature and
by a set of chemical potentials corresponding to all the conserved charges. It follows
from the observations that the dennities of all charges in the Universe that can be
measured is very small or even zero. So in what follows we will usually assume that
4 = 0. An exception is the discussion of the baryon asymmetry of the Universe
when nonzero though very small g is generated on nonequilibrium stage.

The number density of bosons corresponding to distribution (0.3) at 4 =0
is

_ m(p) 5 J((3)gT3/x? = 0.12¢T2, T >m
M=% f G P {(2r)€312g?mT)3“egp(*m/T), #Tem D

Here ((3) = 1.2 and g is is the number of spin states of the boson. It comes from
the summation over bosonic polarization states. In particular the number density
of photons 18

N, = 0.24T° = 394(T/2.7K)*em™® (0.8)

For fermions the equilibrium number density is
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3 3 .
_ | IN, = 0.09T3, ifT >m;
Ny = {14\’5 s (22)"g(mT) exp(—m/(T), T <m. (09)
The energy density of particles in plasma is equal to
1 dpp*E
p=2 é}?f exp(EJT) £ 1 (0.10)

Here the summation is done over all particle species in the plasma and their spin
states. In the relativistic case

p=(x"/30)KT* (0.11)

where K = Y[gs + (7/8)gs]. In particular for photons we get

x2 T \'eV aaf T Yerg
p= 35T =05 (57g) 5410 (57g) e (012)

The contribution of heavy particles, i.e. with m > T, into p is exponentially small
if the particles are in thermodynamic equilibrium:

pm>T)y=gm (%‘g)aﬂ exp (—g;) (1 + LS + ) (0.13)

&m

As we see helow the equilibrium for stable particles sooner or later breaks because
their number density becomes too small to maintain the proper annihilation rate.
Hence their number density drops as a™ and not exponentially. This ultimately
reaults in massive particle dominance in the Universe. Their number density is even
larger if they possess a conserved charge and the corresponding chemical potential is
nonvanishing. Unstable particles always maintain the equilibrium with the products
of their decay because the decay rate I' does not depend on the particle number
density and the expansion rate goes down so at sufficiently large ¢ the condition
T > H is fulfilled.

Since {} is very close to unity on the early stage the energy density at that
time almost coincides with the closure density {0.10). Taking this into account it is
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easy to find the dependence of temperature on time on RD-stage when H = 1/2¢
and p is given by eq. (0.11):

(0N mp 242(T/Mev)? o
= (32‘:3) VKt VK (t/sec) (0.14)

In the course of expansion and cooling down K decreases as long as the particle
species with m > T disappear from the plasma.

If all the chemical potentials vanish and thermal equilibrium is established
the entropy of the primeval plasma is conserved

d(ap+ P) . .
= (a %) =0 (0.15)
Indeed from the well known relation

dE = d(pV) = TdS — pdV + pdN {0.16)

it follows for i = 0 that

dS(V,T)=d (V”—;-E) = %[d(pV) +pdV] (0.17)

Since for i = 0 the equilibrium values of p and p are functions of temperature only,
¢ = p(T) and p = p(T') it follows from eq. (0.17) that

35 p+tp
Wo T (0.18)
35 Vap
= T (0.19)
Using the evident relation #*S/3VaAT = 82S/8TIV we get
dp=(p+ pMdT/T (0.20)

Conservation law (0.15) follows from this equation and eq. (0.8).



Now let us consider the variation of the particle number density in the
expanding Universe. In the Boltzman kinetic equation the account should be taken
of external gravitational field. In the homogeneous and isotropic case when the
phase space distribution function for particle i depends only its momentum p; and
time ¢ the extra term in the equation is particularly simple:

dni  Ong Bni. Ong o Om
i il 02)

where we have taken into account the redshifting of the momentum, p = —Hp. As
a result the kinetic equation takes the form

(*g—t - Hp; 3%) nipi,t) = S (0.22)

where S; is the collision integral:

5= & 5 [ dozdor(o+pr = ) (0.23)

[1 AG+Y o 2) P [n]I0 £0)— | AZ i+ Y) P [[n (1 £n)| (0.29)
Y z Z Y

Here Y and Z are arbitrary generally muliiparticie states, [Ty n is the product of

number densities of particles forming the state ¥, and

&£p

The sign *+' or *—" in [J(1 £ n) is chosen for bosons and fermions respectively.

It can be easily checked up that in the stationary case (H = 0) distribution
(0.3) with the account of conservation of energy E; + ¥y E = ¥z E, and chemical
potential, s+ Ty g = Lz s (0.5) are indeed the solutions of kinetic equation (0.22).
This follows from the validity of the relation

eIl £n)=]In[I(1 £n) (0.26)
Z itY

“Y Z
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and from the detailed balance condition, | A +Y — Z) |=| A(Z - i+ Y) |
This condition is true if the theory is invariant with respect to time reversion. It
is established in experiment however that this invariance (T-invariance) is only ap-
proximate. To be more exact it is known that CP-invariance is broken and hence
because of CPT-theorem T-invariance is also broken. Still even if the detailed bal-
ance condition is violated the form of the equilibrium distribution functions remain
the same. This is ensured by the weaker condition

3 [ auz,8 (;p - ,,,) (AZ = PP-1AF=ZP)=0  (027)

which can be called the cyclic balance condition. It follows from the unitarity of
S-matrix, §t5§ = §8* = 1. In fact a weaker condition is sufficient for saving the
standard form of the equilibrium distribution functions, namely the diagonal part
of the unitarity relation, 3, W;; = 1 and the inverse relation =; Wiy = 1 where Wy,
is the probability of transition from the state 1 to the state f. The condition that
the sum of probabilities of all possible events is unity is of course trivial. Slightly

less trivial is the inverse relation which can be obtained from the first one by the
CPT-theorem.

Eq. (0.22) with collision integral (0.24) is valid in the ideal gas approxima-
tion when the particle interactions are weak enough. The criterion of its applicability
is the large size of the particle mean free path I = (¢N)™! in comparison with the
average distance between the particles, Ip = NY/3 ~ T-1, This condition is true e.g.
m gauge theories for which ¢ ~ &*/T? H T > my and 0 ~ 3T3/m} H T < my
where my is the mass of the intermediate boson and the coupling constant o < 1.

We will consider first the case when the patticle interactions can be neglected
and the simple equation is valid

(H“% - pa%) n(p,t) =0 (0.28)

Integrating this equation over &*p and making the natural assumption that n — 0
when p — oo we get

N=_-3HN (0.29)
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where N = [ d®pn(p,t)/(2x)? is the particle number density. We have obtained the
natural result that the number density of noninteracting particles decreases in the
course of expansion as a~2.

It is convenient to introduce the dimensionless variables

y =mo/T (0.30)

X =p/T (0.31)

where myg ia a parameter with dimension of mass and the temperature T is formally
defined by the condition

T=-HT (0.32)

Defined in this way the variable T’ can be used even in nonequilibrium case.

In terms of variables y and X eq. (0.28) has the very simple form

an

.ﬂa =10 {(0.33)

Hence for free particies n(p, t} is the function of the ratio A = p/T only. In particular
for massless particles the equilibrium form of the distribution function is maintained
in the course of expansion even when the interaction is switched off. The well known
example of this is the spectral distribution of the cosmic microwave background ra-
diation. For massive particles initially {at T = Ty) equilibrium distribution function
F(E/T) goes into f{1/m?/TIZ + p?/T*?). In the last expression the parameter T is
not of course the temperature of these particles.

In the course of the Universe expansion the interactions between particles
in the primeval plasma are effectively switched off and the number density of stable
particles x in the comoving volume or in other words the ratio N; /N, tends to a
constant value (see eq. (0.29)). This phenomenon is called concentration quenching
in Russion literature and freezing in the English one. The limiting value of the
product N,a® depends on the strength of x-particle interactions. The stronger is the
interaction the longer are the particles in the thermal equilibrium with the plasma
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and the lower their limiting concentration. Roughly speaking N /N, ~ exp(—m/T})
where Ty is the temperature at which the interactions are switched off.

Two cases should be distinguished when the frozen value of the mumber
density is calculated. The first one is Ty > m, and at the moment of decoupling
N /N, = O(1). The second case is Ty < m, and N:/N, <€ 1 at the decoupling.
The first case is realized for light neutrinos. The cross-section of their annihilation
into e*e~-pairs for E, > m. is

o(wy — ete™) = 20,Gha/3x (0.34)

where s = (p; + p2)? is the total energy squared in the center of mass system,
Gr = 107°m}} is the weak interaction coupling constant and the constant coeffi-

cients ', depend upon the neutrino type, C. = sin’ 8w + (sin’ﬂw + 1/2)z a4 5/8,

Cu=C, =sin*fy + (sinzow -1/ 2)2 =z 1 /8. The annihilation cross-sections of v,
and », , are different because at T' < m,, v, and v, interact only with neutral current
while v, interacts both with neutral and charged currents. The neutrine decoupling
temperature is approximately determined by the equality of the annihilation rate
N, and the expansion rate H = 1/2f. For the estimate of the decoupling temper-
ature let us substitute into s = 4E? the average energy of neutrino E ~ 3T and
express I through T by eq. (reft2). Thus we get

IMev  for vy;

Tys ~ 2.7C; P MeV ~ {5MeV for v, and v,

(0.35)

In this calculation we put X = 10.75. This accounts for the contribution of photons
(Ky = 2), e*e -pairs (K, = 7/2) and three species of left-handed neutrinos (X, =
21/4).

If neutrinos are stable then as we see in what follows their mass should be
substantially smaller then T, ;. (For v, it is known from direct experiments.) Hence
at the moment of decoupling Ny + N,y = 3N, /4. To the present time this ratio
becomes somewhat smaller because the photon number density has increased as a
result of e*e~-annihilation at T < m.. The increase of N, can be calculated if the
entropy conservation law (0.15) is used. Comparing the effective number of degrees
of freedom in the primeval plasma before and after the annihilation we find that the
relative photon concentration increases 11/4 times. Hence the number density of
each neutrino type at the present time is
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N+ Noo= — Nwm110(27K)cm (0.36)

Note that it has been implicitly assumned that there is no other sources of photons
except for e*e~-annihilation,

The calculated limiting value of the number density and the data on the
Universe age ty permit to get the upper bound on the neutrino mass (Gerstein and
Zel’dovich, 1966). Using to this end expression (0.16) we get

3 2

: 0.98 - 10*

S m,, < 380eV (2;K ) ( % ::0 Y hm) (0.37)
¥

Here the Universe age ty should be larger than 0.98-10'%y /0. For large ty andfor
hiop this expression gives much stronger bound than the one usually presented in
the literature. The older is the Universe the stronger is the upper limit on m,,.

Inflationary universe models predict 3, = 1. If this is true the bound on
m, depends only on H because for =1 ty = 2/3H. In thia case it reads

3 10 2
3 m,, < 95V 27K }qw wagev [ 2TKY (10 (0.38)
' T., T, ty

The best upper bound is obtained from the minimum of these two.

Though the accuracy in determination of {y and H is very low the existing
trend towards large values shows some inconsistency between them. This makes one
think about possible modifications of the standard expansion scenario. The simplest
possibility is a nonzerc cosmological constant A. In this case the Universe age is
given by eq. (43) with , =}, = 1, = 0. If we assume once again that the
inflationary model is valid and so 2 = 1 the integral (0.43) is explicitly calculated

ty= ——3 0.39
v 5,00 1_Jﬁ (0.39)

If Q, > 0 the values k00 = 1 and #y > 1.5 10'"years are compatible but the upper
bound on m, becomes stronger than for {2, = 0 (Dolgov, 1984):
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Y m,, < 95eV(2TK/T, (1 — ) ki (0.40)

If £2, < 0 the trend to contradiction between the large values of yy and H becomes
stronger but the restriction on m, is weaker. In particular for tyy > 10%ears and
hyon = 0.5 one gets Yom,, < 45eV.

The absence of a reliable model explaining the small value of A-term makes
the bound on m, uncertain within the factor of 2 or 3 because there could be
modifications of the expansion regime connected with the adjusting of A to gero
which are not taken into account in the standard approach. The second source
of uncertainty is a possible deviation of the ratio (N, + N;)/N, from the canonic
value 3/11. For example massive particles with annihilation or decay life-time in
the interval 1 + 10* sec could increase N, without distortion of the spectrum of the
microwave background radiation. The ratio /N, /N, can be made in this way 2 =3
times smaller without breaking successful results of the primordial nucleosynthesis
theory.

Eq. {0.37) for the neutrino number density is obtained for » with one polar-
ization state only i.e for vy and #g. If m, # 0 the particles can have both left-handed
and right-handed polarization. It could seem that the result (0.37) should be divided
by 2 to take into account the neutrinos with improper polarization. But this is not so
because the light v and 5y, are not in thermal equilibrium with the primeval plasma
at T < 100MeV and the entrapy delivery to the neutrinos with proper polarization
makes N, < N,,.

The obtained above upper bound on m, is applicable with slight modifica-
iion to any particles ¢ which were relativistic at the moment of decoupling. If the
interactions of these particles are weaker than interactions of neutrinos they are de-
coupled at higher temperature than v and so with larger number of effective degrees
of freedom in the primeval plasma. So their relative concentrations N/N, at the
present time should be K /K, = K. /10 smaller than that of v and correspondingly
the bound on their mass is weaker by the same factor. Here K is the number of
effective degrees of freedom in the primeval plaama at the moment of the decoupling
of z-particles. If z-particles were in thermal equilibrium when the Universe reheated
after the the end of inflation and decoupled soon after that their mass should not be
greater than a few KeV because K is probably not larger than 10°. If however the
interactions of « are so weak that they are not abundantly produced after inflation is

over the limit on their mass depends upon their production and can be considerably
weaker.



Let us consider now the particles which were nonrelativistic at the decou-
pling. If the products of annihilation of £ are in thermal equilibrium and the dis-
tribution of # in energy has also the equilibrium form integro-differential eq. (0.22)
describing the evolution of the distribution function n:(p) can be reduced to the or-
dinary differential equation for the particle number density N, = f &pn.(p)/(27)>.
Indeed let pairs of £Z-particles are produced and annihilated in reactions of the type
z + & — f where f is generically multiparticle and, what is essential, equilibrium
state. The collision integral in this case has the form

- & T / (2“‘;1;; 8P+ p—p) | A+ 2= ) (n: - I!In:) + S

(0.41)

(see eq. (0.24)). Here S, describes the processes of elastic scattering. It was
assumed that n, = n; and that T-invariance is not broken so that | A(z+ z —
P *=| A(f — z + 2) |* (the particle velocities should be reversed but this is not
essential). The role of the Fermi/Bose corrections has been analyzed by Dolgov and
Kainulainen (1993) and it was shown that depending upon the ratio Ty/m, their
magnitude varies from about 10% to negligibly small.

Since the state f is equilibrium then in the limit of the Boltzman statistics

Hn = exp( Es ;E’) = n%nd (0.42)

where n%? are the equilibrium distribution function of particles z. Note that [J;n,
does not depend on the energies of the separate particles which form the state f. The
distribution function n:(p,t) starts to deviate from the equilibrium one when the
annihilation rate N, /N, ~ o N, becomes smaller than the expansion rate a/a = H.
The distribution in momentum however can maintain the equilibrium form because
it is established by faster processes of elastic scattering with the rate o, /Ny where
Ny is the number density of light particles which are scattered on z and . We see
below that the equilibrium with respect to annihilation is broken when T/fm, < 1
and thus N, < Ny. So we can write

: = expl(s — E)/T] (0.43)

The nonequilibrium manifests itzelf in equality g = gz whereas in equilibrium
ptr = —piz = 0. The possible effects of charge symmetry breaking which could result
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in ps # ps are neglected here but they are very essential in the kinetics of the
generation of the baryon asymmetry.

If now we integrate the collision integral S; (0.41) over &p/(2x)* the con-
tribution of S¢ disappear because of the kinetic equilibrium. Since the particles z
are by assumption nonrelativistic (though this is not essential),

dapxna: Nz

(2r)2E, 2m (044)

Here N, is the total number density with the account of the spin states. The integral
over dv; gives by definition

S (2m)* [ g8 (pe + ps —py) | Al +E = f) = dmlov (0.45)

where v is the relative velocity (in the nonrelativistic limit) of the colliding z and z
and o is the total cross-section of zZ-annihilation averaged over the colliding particle
spins. {We have assumed that the number density of = and Z do not depend on the
polarization.) If the annihilation proceeds in 5-wave the product ov does not depend
on the collision velocity. In the general case

ov = (ov)gv® = (av)o(}k%w {0.46)

where { is the orbital momentum of the colliding particles.

Thus it follows from eq. (0.22) (see e.g. Zel’dovich and Novikov, 1975) that

Ne +3HN, = —(ov) (N2 - N2,,) (0.47)

where N_ ., is the equilibrium number density of particles « (0.9,0.7) and {ov} is
the the temperature average of ou:

{ov) = N? g—;’)‘s%n,ngav = Ci{ov)o (T/m.) (0.48)

where
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In particular Cy =1 and C) = 6.

Eq. (0.47) can be used for calculation of the limiting for # — oo concentra-
tion of stable relics of big bang. The conditions of its validity has been formulated
in the derivation. This equation can be solved numerically to determine the frozen
number density of massive relic particles which survived after big bang but in many
cases a very simple approximate expression is sufficient

N, 1

F‘f ~ Fann PN (0.50)

This result permits to evaluate quickly the mass density of the relic particles.

We have considered the case when particles are burned in the two-body
collisions z + £ — all. It is possible that particles can be burnt only in three-body
collisions. The physical example of such case has been considered by Okun (1980)
who discussed the existence of new particles with large radius of confinement. The
model predicts neutral massive particles # which disappear in the course of the
Universe expansion through the reaction 38 — 28. The residual cencentration of
relic particles disappearing in three-body collisions is {Dolgov, 1980)

ro = No/ny 25 100(mg fmp))*(mge /Ty (Tm)*/? (0.51)

where

T = (2ms)™ f [ A(36 — 26) * dry (0.52)

is the probability of the transition 38 — 2 normalized to unit number density and
T is the freezing temperature,

me

1 5 my 1
CEEEY [1n(rm,) - K] (0.53)

Note that the asymptotic value of the concentration is proportional to mp} for

two-body burning and to m;}f ? for three-body burning.
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Now let us consider a few simple examples on using these results. We have
shown that the number density of particles in the comoving volume tends to a
constant value in the course of the universe expansion. This phenomenon is called
the concentration freezing. The calculated number density of cosmic relics can be
used for the derivation of the cosmological bounds on their masses or the interaction
strength in the same way as it has been done for neutrinos.

If one tries to apply eq. (0.50) to nucleons (Zel'dovich, 1965; Chiu, 1965)
the result would be discouraging

rpy=Tpgy N 107 (054)

The cross-section of N N-annihilation at small energies is taken to be gv sz 10~ P em?
and the freezing temperature (that is the temperature when the annihilation effec-
tively stopped) is T} = my [45 =~ 25MeV.

Astronomical data give much larger baryonic number density, Ng > 107'°N,,.
This is an extra evidence in favor of the baryonic excess in the Universe at least at
sufficiently small temperatures T < my. The number density of antibaryons in the
case of baryonic excess should be exponentially small.

The analogous considerations have been used by Zel'devich, Okun, and
Pikelner {1965) for the evaluation of the concentration of the relic quarks in na-
ture if the latter could exist as free particles and their absence in experiment were
explained by the large mass. Assuming that o(¢g) = o(NV N)(mn/m,)? we get

rof ® (Mof/mn)ray = 107 %m, /mp) (0.55)

The baryon asymmetry does not considerably change the result because the extra
quarks should disappear in the reaction ¢¢ — Bg.

Eq. (0.55) shows that if there existed free quarks their concentration relative
to that of nucleons would be as large as 1071°. This huge value is excluded by exper-
iments on the search of free quarks in nature which give 10— 15 orders of magnitude
smaller upper bounds. It is a strong evidence in favor of quark confinement.

The cosmological bounds on heavy particle masses are sensitive to the de-
pendence of the annihilation cross-section on the masses of the colliding particles.
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If gauge theory is valid then in the energy interval higher than the masses of inter-
mediate bosons the cross-section is

VOann & To (0.56)

Here m, is the mass of the annihilated particles. In this case cosmology gives an
upper limit on m,. We assume in what follows that the energy density in the
Universe is equal to the closure density, p = p.. In this case the bound on m,
follows from the condition p, < p..

The bound turns upside-down for the particles with masses smaller than
the masses of intermediate bosons. In this case the annihilation cross-section is
proportional to m2 and the condition p < p, leads to a lower bound on m.. Possible
particles of this type could be hypothetical stable heavy neutral leptons L. If they
possess the same interaction as neutrino differing only in mass the cross-section of
their annjhilation is

o(LL — all)y = CGim} f6x (0.57)

where Gr = 107%m3? is the Fermi coupling constant and the constant factor € is
determined by the number of the possible annihilation channels. For sin? iy = 0.25
each charged lepton with m < my, each neutrino, each upper quark, and each lower
quark contributes into (' respectively 1, 2, 2/3, and 13/24. The quark contribution
is multiplied by 3 to take into account three quark colors. Thus C == 10.

Repeating the previous considerations but with cross-section (0.57) we ob-
tain (Lee and Weinberg, 1977; Vysotsky, Dolgov, and Zel'dovich, 1977):

L
my > l.shlm (0'58)

The result is obtained for K = 205/4 and Noo/N,; = 13 which corresponds to three
types of left-handed neutrinos, electrons, muons, photons, 8 gluons, and u- and d-
quarks with their antiparticles in the primeval plasma at the moment of freezing at
Ty = mi/20. Thus stable neutrinos should be roughly speaking either lighter than
30 eV or heavier than 2 GeV. Now we know even without cosmology that there are
no new neutrinos in the forbidden mass interval because LEP data permits only 3
relatively light neutrinos and all three of the known ones are lighter than 2 GeV.
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This approach is applicable for any stable particle. In particular in this
way one can cobtain the bound on the mass of the lightest supersymmetric particle
which is possibly stable. Unfortunately the result depends on the masses of the
superpartners which determine the anmihilation cross-section. The details can be
found in review by Sarkar (1985) or in paper by Kane and Kani (1986).

If the annihilation proceeds due to long-range forces the perturbation theory
croas-section should be multiplied by the Coulomb factor (Sakharov, 1948):

2rafv
1 — ezp(—27afv)

Jg — 0Oy

(0.59)

This correction is essential for 2ra > v & (3T/m)'/2, For electromagnetic interac-
tions with e = 1/137 this condition is not valid at T = T} = m/In W. However in
the case of strong interactions e.g. in-annihilation of heavy quarks this cross-section
rise can be essential and one have to use the given above equations with [ =1/2.

The bounds which have been discussed in this section can be reformulated
as the lower bound on the annihilation cross-section (Dolgov and Zel’dovich, 1980):

ov > 3107 em?hil(Nyy [N} K} (0.60)

The surprising feature of the cosmological result is that it is a lower bound while
laboratory experiments give upper bounds on cross-sections.



