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ABSTRACT

This series of lectures is about the role of particle physics in physical
processes that occurred in the very early stages of the big bang. Of
particular interest is the role of particle physics in determining the
evolution of the early Universe, and the effect of particle physics on
the present atructure of the Universe. The use of the big bang as a
laboratory for placing limits on new particle physics theories will also
be discussed,

1. THE STANDARD COSMOLOGY

Before discussing the physical processes that occurred in the first second of
the big bang, the basic Friedmann-Robertson-Walker (FRW) cosmology will be
reviewed. First, the physical observations that lead to the assumption of a homo-
geneous and isotropic space will be reviewed. Some implications of the Robertson-
Walker metric for the red shift and the expansion of the Universe will be derived.
With a simple assumption of a perfect fluid for the stress tensor, the Friedmann
equation will be integrated to express the age of the Universe in terms of the ex-
pansion rate. The implication of the conservation of entropy will be illustrated by
considering the decoupling of massless neutrinos and gravitons. Finally, the pri-
mordial production of the light elements will be discussed. Details of the standard
mode] ¢an be found in the lectures of Ellis.
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1.1 Homogeneity and Isotropy of the Universe

The distribution of matter (at least visible matter) in the Universe seems to
be homogeneous and isotropic on sufficiently large scales. One indication that the
distribution becomes homogeneous on large scales is the behavior of the two-point
correlation function £. The two-point correlation function is defined as the proba-
bility of finding an object at a distance r from another object in & volume element
5V U: 6P = n6V[1+ £(r)], where n is the number density of objects in the sample.
For a uniform Poisson distribution ¢ = 0. The magnitude of £ is thus an indication
of the departure of the distribution of galaxies from homogeneity. Several cata-
logs give a galaxy-galaxy correlation function consistent with a simple power law
form of £(r) given by £(r) = (r/5h~'Mpc) 1%, where h represents the uncertainty
in the determination of Hubble’s constant (Ho = 100 h km sec 'Mpc™'), and 1
Mpe==10%pc=10% x 3.1 x 10%cm. At distances larger than 5h~*Mpc, the correla-
tion function drope below unity, suggesting that a uniform distribution becomes a
good approximation. Of course this one piece of evidence does not prove that the
distribution is uniform. In the past few years there has been a growing amount
of evidence that there is a rich structure in clusters, filament, bubbles, ete., on
scales in excess of 5h~1Mpe, which serves to illustrate the fact that the two-point
correlation function does not provide complete information on clustering. Never-
theless, the decrease in the galaxy-galaxy correlation function is evidence that on
large scales the distribution of matter is uniform.

The microwave background radiation (MBR) is evidence that the Universe is
spatially isotropic.?l Observations of the temperature of the MBR are consistent
with a blackbody of T = 2.72K. Deviations from the Planck spectrum may be
real, or they may represent systematic errora such as background subtractions.

A remarkable feature of the MBR is its high degree of isotropy. This isotropy is
best illustrated by considering temperature differences in the background radiation
as a function of the angular scale of the separation. The results of the observations
are? but for a dipole moment to the radiation of AT/T = 1073, the MBR is
isotropic on acales as small as 10”. The dipole moment can be understood as the
peculiar velocity of the earth with respect to the MBR. The isotropy on smaller
scales indicates that when the MBR laat scattered the distribution of matter was



uniform.

It is easy to make an estimate of the distance to the last scattering surface.
If we assume that the mean free path of the photons is determined by Compton
scattering off free electrons, 4+ ¢ — 4 + ¢, the mean free path is given by X =
(nsor)!, where r, is the number density of electrons and or is the Thomson
cross section (o7 = 8.85 x 10~ ¥%cm?®}. The number density of free electrons can
be expressed in terms of the average number of electrons per nucleon, ¥,, and the
electron jonization fraction, X,, as n, = X,Y,ny, where ny is the nucleon density.
The nucleon density is usually determined by its contribution to the mass density
pn = myny, where py is the mass density of nucleons, and my is the nucleon
mass. The nucleon mass density in turn is usually expressed in terms of its ratio
to a “critical density”, given by

_3m
~ 8xG

Pc = 1.88 x 10"7A? g cm 3, - (1)

The fraction of the critical density in any species i is defined as {J;
% = pi/pc. {2)

The electron density is then n, = 1.12 x 10-X,Y,xyA%em—3. All observational
evidence gives flyh? < 1. If we assume X.Y, = 1 (the maximal value), and ignore
for the moment any change in n, due to the expansion of the Universe, then the
mean free path (distance to the last scattering surface) is A > 10*® em, This
calculation will be improved by taking into account the expanaion of the Universe
and by a better calculation of X,. However the estimate made above serves to
illustrate the main point: the surface of last scattering of the MBR is at a great
distance and the distribution of matter on this large scale was isotropic when the
MBR last scattered.

Finally, there is a strong theoretical prejudice for only considering spaces that
are spatially homogeneous and isctropic. There will be only one undetermined
function in the metric for a homogeneous and isotropic space. This allows for a real
confrontation with the meager observational evidence. The philosophy taken here
is to assume the simplest model and confront the data. A successful confrontation
will result in the remarkable achievement of a simple model for the evolution of
the Universe. A failure of this simple model would signal a breakdown either in
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the cosmological principle (that space is homogeneous and isotropic) or in the field

equations of gravity.

1.2 The Robertson-Walker Metric

The metric for a space with homogeneous and isotropic spatial sections is given
by 4

ds’ = dt' - B*(¢) { + r*df? + r? sin? MgS’} (3)

dr
1—kr?
where (t,r,8,¢$) are coordinates, R(t) is the cosmic scale factor, and k = +1,-1,
or 0 for spaces of constant positive curvature, constant negative curvature, or zero
spatial curvature. The coordinate r in Eq. 3 is dimensionless and scaled to R(t},

i.e., r ranges from 0 to 1.

The meaning of the cosmic scale factor R{t) can be illustrated most easily
by considering the space of constant positive curvature (k = +1), and by em-
bedding the three-space into a four-dimensional euclidean space with coordinates
Z), T3, I3, and x;. Under a coordinate transformation to “four-dimensional”
apherical coordinates (R, x, §, ¢) related to the four-dimensional cartesian coor-
dinates by z; = Rsin xsinfcos ¢, ; = Rsin xsinf sing, v3 = Rsin xcosd, z, =
R cos x, the Robertson-Walker metric takes the form

ds? = dt* — R*(t) [dx® + sin® x(sin’ 0dg” + d6?)] . (1)

The above form explicitly illustrates the metric for k = +1 is that of a three-sphere,
8%, with radius given by R(t). The volume of the S is given by

V= j:‘" j:- /: Rsin? y 8in 8dydidg = 23R, )

The radius of the §? today is larger than the Hubble radius, Ry = Hy' = 9.24 x
10**A~l¢m. The space has finite volume, but has no boundariea. For the ¥ = —1
choice (space of constant negative curvature)}, the apace is the 3-hyperboloid, @2,
‘and the metric can be written in the form of Eq. 4 with siny — asinhy. The
volume of the Q3 is, of course, infinite since the range of x is —oo to + oo, For
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the k = 0 choice, the spatial metric is that of RS, i.e., spatially flat. It also has

infinite volume.

It should be noted that the assumption of homogeneity and isotropy cnly im-
plies that the spatial metric is locally $%, @3, or R?, and the space can have
different global properties. For instance, for the spatially flat case the global prop-
erties of the space might be that of the three-torus, T°, rather than R3. Such
non-trivial topologies may be relevant in light of recent work on theories with ex-
tra dimensions, such as superstrings. In many such theories the internal space is
compact, but has topological defects such as holes, handles, etc. If the internal
space is not simply connected, it is likely that the external space is also not simply
connected, and the global properties of the space might be much different than
the simple §%, @3, or R3.

Before considering the dynamics of expansion, it is possible to understand the
effect of expansion on the red shift of light from distant galaxiea. Suppose a
photon is emitted from a source at coordinate r = r, at time ¢; and arrives at a
detector at time ¢, at coordinate r = 0 (for simplicity consider propagation along
d¢? = d8* = 0). The massless photon will travel on a geodesic (ds? = 0), and the
coordinate and time will be related by

b ot 1 dr
n R(D) j; A=z = /(M) (6)

A photon emitted at a time #,+ 82, will arrive at the detector at a time ¢y+8¢;. The
equation of motion will be the same as Eq. 6 with t; — ¢, + §¢; and to — tg + &tp.
Since f(r;) is constant (the source is fixed in the coordinate system)

to d¢ to+fta Jt
iy R_(£j=/:1+n, m (7)

By simple rearrangement of the limits of integration

[ ra= L v ®

If 6t is sufficiently small, then R(t) will be constant over the integration time of
Eq. 8, and

&ty 8t
R() ~ R(o)’ ©)
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If we consider §2; {6tg) to be the time of successive waves of the emitted (detected)

light, then §t; (6ty) is the wavelength of the emitted (detected) light, and

M _ Rt
do  Rt)

The red shift is usually defined in terms of z, by

(10)

_d—X
= Y (11)

In terms of R{t),

= 20y (12)

Any increase {(decrease) in R(t) leads to a red shift (blue shift) of the light from
distant sources. The fact that today a red ahift of light from distant sources is
observed implies that the Universe is expanding.

Hubble’s law may be found directly form the FRW metric without knowing
anything about the dynamics of the expansion. Hubble’s law relates the “lumi-
nosity distance” d; to the red shift 2. If a source has an absolute luminosity L
(the energy per time produced by the source), the luminosity distance is defined
in terms of the measured flux F (the energy per time per area measured by a
detector) by

L

F= o

(13)

If a source at co-moving coordinate r = r; emits light at time Z;, and a detector
at co-moving coordinate r = 0 detects the light at £ = ¢, conservation of energy
(T™%, = 0) implies

= R'{to) 57— = Rito)r1(1 + 2). (14)

R(t )

The dependence upon r, must be removed. The first step is to expand R(t} in
A DOWeET Beries

R(t) _ R(to) 1{ Rlto) R3(to) .
Rl ' RG 5(—3’00)}2(‘ )) Bt ")

+..., (15)
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or remembering R(ty)/R(t) = 1 + 2, Eq. 15 can be inverted for small Ho(Zs — )

to give (this analysis follows Weinberg *I)

z2=Hy(tg—1) + (1+ @) Hi(to—t)2 +...

2
where
_ R(t)
He = R{to)
_ —R(t)
= Rt R(to).

Eq. 16 can be inverted to yield
(to — £) = H;! [z— (1+%~)z’+...].
It is also possible to expand f(r,) of Eq. 6 in a power series

fr) = r1+§+... (k= +1)

m (k =0)
r3
= n-gte. (k=-1.
Using the expansion of Eq. 15 in Eq. 6 gives

1
= R_l(tu) [(‘o - t]) + EHo(to - tl), +.. .] .
Using the expression for (2, — ;) gives

re = R{te) \Hy! [z - %(1 + )2 +] :

Substituting this expyession into Eq. 14 finally yields Hubble’s law

1
Hydr =2+ -2—(1—@)2’4'...

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

Note that the linear L«!mtion between dy and z fails for z — 1 if gy # 1. Note that
Hubble’s law was derived without explicitly solving the dynamics of the Einstein

equations.
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1.3 The Friedmann Equation

Before solving the Einstein equations for the evolution of the scale factor R(t),
it is necessary to make some assumptions about the dread right hand side of the
Einstein equations. To be consistent with the symmetries of the metric, the stress
tensor T, should be diagonal, and by isotropy the non-zero apatial parts of the
metric should be equal. The simplest realization of such a stress tensor is that of
a perfect fluid characterized by an energy density p and a pressure p

T":, = diag(ﬂ! bt S _P)' (24)

The conservation of energy equations (T"‘;‘, = 0) gives
d(pR®) = —pd(R%). (25)

For simple equations of state Eq. 25 gives
. . y
RADIATION (p= sp) = pux R

MATTER p=0) = puxR?

VACUUM ENERGY (p=-—p) => pox R° (26)

The “early” Universe will be radiation dominated, and in the absence of vacuum

energy, the “late” Universe will be matter dominated.

The dynamical equation that describes the evolution of R(t) is found from
the Einastein field equations. There are two independent equations from the field
equations, one of them can be taken as Eq. 25, and the other is the Friedmann

equation
B\ k _ s8rG o
(E) TmT T3 : )

With the definitions of pc and {1 in Eqs. 1 and 2

k .
mE -t . (28)
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Since H?R?* > 0, there is a correspondence between the sign of k, and the sign of
-1

k=+1 = 0 >1 CLOSED
k=-1 —> 1<1  OPEN. (29)

A different combination of the Einstein equations yields
3R = ~47G(p + 3p)R. (30}

Since today R > 0, if p + 3p was always positive, then at some finite time in the
past B must have been equal to zero. This time is defined as t =0. At R =0
there is a singularity, extrapolation past the singularity ia not possible.

The Friedmann equation may be integrated to give the age of the Universe in
terms of the expansion rate, Let sub-0 denote the value of quantities today. The
energy density scales as p/py = (R/Ro)~* for 2 matter-dominated (MD) Universe,
and p/po = (R/Ry)~* for a radiation-dominated (RD) Universe. The Friedmann
equation becomes

(&) 4 = 5% oo
= ¥, (%) (an). (31)
Using k/R3 = H3(flo — 1), the time as a function of Ry/R = 1 + z is given by
e e O
= B! [o{mrl TER :x ey (BD). (32)

The age of the Universe is obviously a decreasing function of {}. In the limit
1 —0,t — HyY(1+2)7! = 9.78 X 10°(1 + 2)*A~* years for both (RD) and {MD).
If{1=1, then

t = 20+2)VE;  (MD)

= %(1+=)-=H.,—1 (RD). (33)



k=-1

k=0

o=t 1

SCALE FACTOR

TINE
Figure 1: The evolution of R for closed (k = +1), open (k = —1), and flat {k = 0)

cosmologies

The present age for o matter-dominated f} = 1 Universe is 6.5 x 10°h~} years.
This age is consistent with the lower end of eatimates of the age of the Universe
on the basis of stellar evolution and nucleocosmochronology if & is not too much
larger than 1/2.

Eq. 32 can be integrated to give R as a function of time. For k = +1, K
increases to & maximum, then decreases to zero. For k = 0 or k = —1, R increasea
without limit, The evolution of R is shown in Fig.1.

For many of the problems of interest in coamology, it is only necessary to
know the age of the “early” Universe, when it was radiation dominated and the
curvature term in the Friedmann equation (k/R? o« R~?) was negligible compared
to the energy density term {(8rG/3)p o« R~* for radiation). The region of validity
of these criteria will be quantified shortly. The second condition implies {1 = 1 is
a good approximation in the early Universe, and from Eq. 33

1
t = -H!
2
8rG
H = TPR: [34)

where pp is the energy density in radiation. The energy density and number
density of a particle of mass m at temperature T is given by (for zero chemical
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potential)
_ o [ (B
P = o f 1% ezp (B/T) 4B
_ o0 ( E’ m:) 1/2
) f 1+ exp(E/T) 1% ezp(B/T) 205 (35)

where g is the number of spin atates and the + (—) obtains for Fermi {Bose)
statistics. In the relativistic limit (T » m)

_ (x3/30)gT* (BOSE)
* 7 =*/30)z/s)er (FERMI)

{ ((3)/x%)gT® (BOSE)

(¢(3)/%*)(3/4)gT® (FERMI). (36)

In the non-relativistic limit the energy density and the number density is the same
for Bose and Fermi statistics

p = mn

g (';—f) exp(-m/T). (37)

n

The total radiation energy density can be expressed in terms of the photon
temperature T as
2

or = 2o0.T*, (38)

where g, counts the effective massless degrees of freedom
4 T (T; )4
= Z (=2 . 39
l-io:lomg ( ) si:farzn:ﬁmg T ( )

The relative factor of 7/8 accounts for the difference in Fermi and Boee atatistics.
In terms of g, and the Planck mass mp; = G~4% = 1.2 x 10GeV, the age and
expansion rate of the early Universe is given by (Tuew = T/1 MeV)

t = 0.3g;/1 20 T, 2L~ 1 secTily

H = l.ssg:n;’;;. (40)
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1.4 Entropy

Throughout most of the history of the Universe {in particular the early Uni-
verse) the reaction rates of particles in the thermal bath, I';,.,, were much greater
than the expansion rate, H, and local thermal equilibrium (LTE) should have
been maintained. In this case the entropy per comoving volume element remains
constant. The second law of thermodynamics states that

TdS = d(.pV) + pdV (41)

and the energy density and pressure are related by

iNs a8
aTav ~— 8vaT 42)
which implies
dp
r— = .
gr=Ptp (43)
Using the conservation of energy equation written in the form
d s _ oadp
& [R (p+p)] =R (44)
in Eq. 43 tesults in the conserved quantity
d [R3p+p)
This conserved quantity is simply the entropy S.
It is useful to define an entropy density »
s = PP
- T
2x?
where
Ty, 7 T\*
(] L i
= 3 & (—) +- Y (——) . (47)
i=bosona T 8 i=fermions T .
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For most of the history of the Universe all particles had a common temperature,
and g! can be replaced by g..

The conservation of § implies that s o 2, and that ¢, T*R? is constant in the
expansion. The factor of g, enters because as the temperature of the Universe drops
below the mass of a particle species, that species will disappear via annihilations
(assuming it remains in equilibrium} and the entropy that was present in that
species will be shared among the particles remaining in equilibrium. If g, changes,
T is not proportional to R™L.

Massless particles that are decoupled from the heat bath will not share in the
entropy released as the temperature drops below the masa threshold of a species,
but rather the temperature of a massless decoupled species scales as T o« R-L
As an example consider a massless particle initially in LTE which decouples at
time tp, temperature Tp, and scale factor Rp. The phase-space distribution at
decoupling is given by the equilibrium distribution

f(B,tp) = [exp(E/Tp) £ 1]*. (48)

After decoupling the energy of the massless particle is red-shifted by the expansion
of the Universe E(R) = E(Rp){Rp/R). So at some time after decoupling the phase
space density of a particle of energy E will be the phase space density of a particle
of energy E(R/Rp) at decoupling (since the phase space density is conserved)

f(E,t) f(E%.tn) = [exp (REﬁ ) 11]

[exp(B/T) £ 1]. (49)

H

Thus the distribution for massless particles is self-similar in expansion, with the
temperature red-shifting as R!

Ry

T=To% x B! DECOUPLED, {50)

not o R-1g:"/* as for particles remaining in equilibrium.

The effect of decoupling is best illustrated by considering the decoupling of
massless neutrinos. In the early Universe neutrinos are kept in equilibrium via
reactions of the sort b « ete¢™ + ... The cross section is weak, given by o =
G} T2, where Gy is the Fermi constant. The number density of the massless
particles is n =~ T3, so the interaction rate is



Tine = nojv| = G} TS, (51)
The ratio of the interaction rate to the expansion rate is

T, GLT® T
H = Tmp 1 (lMeV) ) (52)

At temperatures above 1 MeV, the interaction rate is greater than the expansion
rate and the neutrinos are in equilibrium. At temperatures below 1 MeV the
interaction rate is less than the expansion rate and neutrino interactions are too
weak to keep them in equilibrium. Below 1 MeV the neutrino temperature T, ecales
as B!, Subsequent to neutrino decoupling the temperature drops below threshold
for ¢* production and the entropy in the % is transferred to the photons but not
to the decoupled neutrinos. For T > m,, g, includes v (g = 2) and e* (g = 4),
for an effective g. = 11/2. For T < m,, only the photons are in equilibrium for
an effective g, — 2. Since ¢,(RT)’ is constant, RT is increased by the third-root
of the ratio of g. before e* annihilation (11/2) to g, after e* annihilation (2). For
the photons RT is increased by a factor of (11/4)/2, due to e* annihilation, while
RT for the neutrinos is unaffected. Therefore today the ratio of T, and T, should
be

1/3
;—: =(3) =14 (53)

which gives T, = 1.8 K. The addition of three two-compeonent massless neutrinos
at the above temperature results in a value of g, today of

7 4 4/3
Gi(today) =2+ g % 2x3x (ﬁ) = 3.36. (54)

This results in a present energy density in massless particles and entropy density
of

¥
PR = ;—Og.T‘ = 7.56 x 10~ ¥g cm™?
2
= %g:ra a 2800cm™, (55)

Another example is the decoupling of gravitons. For particles with only gravita-
tional strength interactions, the interaction rate should be I'yy = nojv| = G275 ~
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T%/m},. This will become less than the expansion rate, H =~ T?/mp,, at temper-
atures less than mp;. If gravitons decouple at the Planck time, the contribution
to g, from particles we know ! was 90.75. Therefore today the number density
of gravitons should be smaller than the number density of photons by a factor of
roughly (2/90.75).

Before concluding this section it is useful to mention three parameters that de-
scribe the Universe. The first parameter iz the time of the decoupling of radiation
and matter. Using the fact that the electron number density scales as (R/R;)?, the
temperature acales as By/R, and the equilibrium ionization fraction of electrons
found from the Saha equation is ®

X:  (2rm,T)%?
1 - X. - (2“)3".

exp(—B/T), (56)

where m, is the electron mass and B is the ionization potential of hydrogen, the
red shift at decoupling (also referred to as recombination) is 1 + z,,, =« 1500. This
yields a temperature and time of decoupling of

Tvee = To(l + 2r00) = 4100K = 0.35eV

1

Lroe

to(l+ Zpee) 3/ = 1.1 X 10* A" years = 3.5 x 10" h™' sec.  (57)

If we define pps as the total energy density in “matter” (i.e., in non-relativistic
particles), then today ppr = 1.88 x 10722y, h? g cm®, where {1, is the fraction of
the critical density contributed by pas. Using Eq. 55, and the fact that pg/opr =
Ro/R = 1+ z, then the red shift, time, and temperature of equal matter and
radiation energy densities is given by

1+2, = 2.5x10* A% Oy

T To(l + Sq) =58 A° {lxe eV

teq to(1 + 2,) %7 = 1.6 x 10° A~* 01} ?years. (58)
The baryon number density is defined as

ng =m —n; = 1L12x 107° Ny h? em %, (59)

1The particles we "know™ are taken to be the three generations of quarks and leptons, the gauge
particles of SUy x Uy x [/, and the Higgs doublet of the Weinberg-Salam model.
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where n, (n;) is the baryon (antibaryon) number density, and it has been assumed
that today n; = 0. The baryon number is defined as

BE%:(&XIO" Ny A2 (60)

As long as the baryon number is conserved in particle interactions and entropy is

conserved in the expansion of the Universe, B will remain constant.

1.5 Primordial Nucleosynthesis

The first step in understanding primordial nucleosynthesis is the application of
nuclear statistical equilibrium (NSE). In kinetic equilibrium, the number density
of a nucleus of mass number A ia given by

mAT)a,r: (m - mA)

2nr T (61)

n4=g,;(

In chemical equilibrium the chemical potential of a nucleus with mass number 4
and charge 2 is related to the neutron and proton chemical potentials by

b= Zuy+ (A — ). (62)

In kinetic equilibrium the neutron and proton number densities (r, and n,) are
given by expressions like Eq. 61 with the neutron and proton chemical potentials
and masses replacing 4 and m,. Therefore, in chemical equilibrium, 2

exp ((Zuy + (A4 — Z)pn)/T)

exp (4 /T]
s oa-zf 2%\ _,
= afnd T (22 2 A e [(Zmy + (4 - Z)ma)/T]. (63)
With the definition of the binding energy
By=Zmy+ (A — Z)m, —my, (64)

Eq. 61 becomes

3{a-1)/2
2 nEnd~% exp(B,/T). (65)

_ 43132-4(
Na = ga maT/ . »



4z B,

H | 2.2MeV
3H | 85MeV
SHe | 7.7 MeV
1He | 28.2 MeV

Table 1: The binding energies of some light nuclei,

A list of binding energies are given in Table 1.

Rather than the number density, it is useful to consider the mass fraction,
which is defined as the fraction of the total baryon mass in any particular species

ﬂAA

X, = ——

A "
X o= 1 (66)

i

In NSE the mass fraction of species A is given by

18 T A0/ _
X4 =gad®/22-4 [;e(s)m—N A1 XZX4"% exp{B4/T), (67)
where
n= %"1 =28 x 107° Qy AL (68)
¥

The fact that the Universe is “hot™ (n, 2 ny; v is small) is crucial in primordial
nucleosynthesis. After considering the “initial conditions” primordial nucleosyn-
thesis will be considered in three steps.

e Initial Conditions (T » 1 MeV, t « 1 sec.): The initial conditions for
primordial nucleosynthesis are no heavy elements (only protons and neutrons) and
equal numbers of protons and neutrons. The lack of heavy elements is a result of
the small value of n. Consider a simple system of *He, neutrons and protons with

3n the pre-exponential factor the difference of the neutron and proton masses will not be impor-
tant, and my will denote the nucleon mass.
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Figure 2: The NSE abundances of the n, p, *He system as & function of temper-

ature,

fin = Ry In NSE the ‘He mass fraction (X,) is given by (X, = X, = (1 — X,)/2):

X = o [ S]] (Z) Lo xotenisym)

= 6.2 x 1074T5/% n3 exp(28.2/ Ty )(1 — X4)*, (69)

where 1y = 10°y. A graph of X, as a function of T is shown in in Fig. 2. Until
Tiev drops below 0.3, the abundance of helium is small because n is small. 2

The initial condition that n, = n, is a result of the fact that the weak reactions
that interconvert neutrons and protons are much faster than the expansion rate

at this time. The six reaction that interconvert neutrons and protons are
Re—per, VR+—IPe,  £n +— Py, (70)

The rate (per nucleon) of the above reactions are found by integrating the square
of the amplitude for a given process, weighted by the available phase-space densi-
ties of particles (other than the initial nucleon), while enforcing four-momentum
conservation. As an example, the rate for pe — vn is given by T35l

*The small abundance of *He at high temperature is sometimen incorrectly blamed on a deuterium
*bottleneck.” But the abundance of *He is small in NSE at high temperature, which has nothing
to do with the binding energy of deuterium. The low binding energy of denterium will be
important only somewhnt later.
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m = [ SEIL = LB M, LY TR TR T (2

For all the above reactions
IM[? o GR(1+ 343). (72)
Since this is the same matrix element for neutron decay, it is convenient to write

it in terms of the neutron lifetime 7.

The neutron-proton mass difference, § = m, — mp, = 1.293 MeV, and the
electron mass determine the limits of integration in the rates. In terma of the
dimensionless quantities ¢ = Q/m,, ¢ = E,/m., 2 =m, /T, z, = m./T,,

e~ @)t — )2
¥ exp(all[1 + expllg — 9=’

Apecsvm = (TAa) " L ® der (73)

where Ap simply represents a numerical factor from the phase space integral for
neutron decay. In the high temperature and low temperature limits 5l

0 TXQ, m,
Apg—tim —

In the high temperature limit, the weak rates are much greater than H, and the
neutron proton ratio should obtain the equilibrium value

y= = () 7o "

Therefore, at high temperature (T > @), n, = n,.

o Step 1 (£ = 107 %sec., T = 10 MeV): For step 1, the energy density of the
Universe is radiation dominated, and the e*, =, and 3 neutrinos give g. = 10.75.
The weak rates are much larger than H, so n, = n,, and T, = T,,. The heavy
elements ate in NSE, but they have very small abundances due to the fact that n
is amall. For example, if n = 10~°

X = 5 (ﬂ%)ﬂf: exp(B4/T) =2 x 107%
32
X, ~ g (ﬂ%) exp(By/T) = 1 x 1071, (76)
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* Step 2(2 =~ 1sec., T = Tr == 1 MeV): At about this time the weak rates freeze
out (become smaller than H). When the weak rates freeze out the neutron-proton
ratio is given by the equilibrium value,

1

P

=]

after freeze-out the neutron-proton ratio is given by {r is the neutron lifetime)

1
(%) = exp{—t/r). (78)
After the neutrinos decouple, the annihilation of the e* increases the photon tem-
perature relative to the neutrino temperature by a factor of (11/4)1/2,

e Step § ({ = 1 — 3 minutes, T = 0.3 — 0.1 MeV): At this time the effective g,
is 3.36 for 3 neutrinos, and (n/p) has decreased from 1/6 to 1/7 due to neutron
decay. At this time the NSE value of *He starts to rapidly approach one. However
in the big bang the actual amount of ‘He cannot keep up with the NSE values
since there are only trace amounts of ?H, *H, and *He present, and these elements
are intermediate steps in the fusion of *He. This two minute delay in the onset of
*He obtaining the NSE value allows some more of the neutrons to decay. Once ‘He
does obtain its NSE value, almost all of the available neutrons are processed into
‘He as it has by far the largest binding energy per nucleon of the light elements.
If the densities of neutron and protons at this time are denoted by n2 and nj and
all the neutrons are processed to *He, then the final amount of *He is given by
ny = nl /2. In terms of the mass fraction of *He and the neutron-proton fraction

_ 4n, _ 2(a/p)° -
BT YR s e )

X4

using {n/p)® = 1/7.

At this point primordial nucleosynthesis ends when the nuclear rates become
less than H. There are three reasons for the termination of primordial nucleosyn-
thesis. The Coulomb barriers at low temperatures (T < 8 x 10° K) suppress the
rates. The baryon density is low {see Fig. 3) which suppresses three-body initial

_states, Finally, there are no A = 5 or A = 8 stable nuclei to act as intermediate
steps.
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1 71

Figure 3: The development of primordial nucleosynthesis. The dashed line is the
baryon density, and the solid lines are the mass fractions. The model is for 3
neutrinos, 7 = 3 x 10% and 7y;; = 10.6 minutes.

The development of primordial nucleosynthesis (the first day in the life of the
Universe) is shown in Fig. 3. All numerical results presented here were obtained
with aid of a computer program courtesy of Robert Wagoner ®.

Before discussing the agreement with the inferred values of the primordial
abundances, it is useful to consider the sensitivity of the final abundances on the
input parameters.

o r: The weak rates are proportional to (1 + 3g3), which is usually determined
by measurement of the neutron lifetime. Since A o 7~!, an increase in r results in
a decrease of A, which means the weak rates freeze out earlier. From Eq. 77, an
increase in Tr leads to and increase of n/p, hence more “He.

e g,: Since H x ¢l/%, an increase in ¢, leads to a faster expansion rate, which
results in earlier freeze out and higher *He. This is used to study the effect of
additional light neutrinos, since

T
g = 2+§(4+2XNU)+"°

10754+~ N, =3

12504 --- N, =4. (80)



.25
Xa
.20
Na
NH
Ma
Ny

Figure 4: The primordial abundances of the light elements as a function of n
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e n: In NSE the abundances of the elements incressea with 1. An increase in
n allows ‘He to be produced earlier when there were more neutrons, hence more
He will be produced. NSE will be obtained for a longer time, so there will be less
2H and *He.

o Nuclear reaction rates: For the reactions of interest in primordial nucleosyn-
thesis the uncertainties in the nuclear reaction cross sections are not important.

The primordial mase fraction of *He and the abundances of 1H=D, *He, and
7Li relative to hydrogen are given in Fig. 4.9 The effect of the uncertainty in the
neutron lifetime and the number of light neutrinos on X is indicated. The deter-
mination of the primordial abundances from present observations is very difficult.
In order of decreasing reliability °!

0.22 - 0.20

X,
D

-5
T 10

v

D+3 He
§x107% > —_——
- H

TL'
2x 1071 > T‘ >1x 107, (81)

All these abundances are consistent if N, < 4. This consistency is the strongest
evidence that the standard Friedmann-Robertson-Walker cosmology can be ex-
trapolated back as far as 1 second after the bang when the temperature was 1
MeV. Having successfully gone back 15 billion years, the next sections will take us
back the final second.
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2. NEUTRINO COSMOLOGY

Before considering the survival of any particular particle, the general framework
for considering the decoupling of particles will be developed in detail. The general
results will be used to study in detail the decoupling of massless and massive
neutrinos. * This study will allow a combinatien of cosmological and astrophysical
limits to be placed on the properties of massive neutrinos. Neutrinos are only an
example of the application of cosmology and astrophysics to limit the properties
of elementary particles. Some brief comments on other particles will be made, and
the possibility of detecting these fossil particles will be discussed.

2.1 Freeze Out

Consider a particle 4 of mass M that is stable, and present in equal numbers
with ite antiparticle 4. Let f denote the phase-space density of ¥. The evolution
of f is determined by the Boltzmann equation, which can be written in the form
L(f] = C[f], where C is the collision operator and L is the Liouville operator. The
collision operator depends on interactions at a point, 8o it should be independent
of the geometry. The Liouville operator, however, depends on derivatives, and will
be sensitive to the geometry, The non-relativistic form of the Liouville operator is

d . s F

L= a + - V,,- (82)

The genera] relativistic generalization of this operator is

9 _pa a
L=p v rg.e’ P’gg- (83)

For the FRW metric, L simplifies considerably, and the Boltzmann equation be-
comes

5 Rm‘ L = cl(E,). (89)

4The terms quenching, decoupling, and freeze cut will be used interchangeably.
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Using the definition of the number density in terms of the phase space density

n=(27)" [ 1(E)&, (85)

after integration by parts the Bolizmann equation may finally be expressed in the

form

dn R - &*p
S +3gn=0m [l (36)

Consider the contribution to the collision integral from the process ¥ — v,
where “y’ will represent a generic massless particle. The right hand side of Eq. 86
26
is

(m [ cin

= A:?-u(z"')_. [f,,(E.,,]f.,(E-,,NMﬁ,,_,‘,; - fd(Ei)fi (Ei)lM|3¢--,~,} ’ (87)

a-— [Endy  Epfog o
AL 2E, 2, " IF, 2E‘6(p,+p,+ Ps— P ) (88)

Eq. 87 can be written in an extremely useful form with the help of two as-
sumptions. The first assumption is T (or CP) invariance of the matrix element
|MJ%s.,, = IMP, 43 The second assumption is that the massless particles ('s)
are in equilibrium f,(F) = exp(—E/T). This assumption, together with the con-
servation of energy (E,, + E,, = Ey + Ej) from 6%, allows the - phase space
density to be expressed in terms of the i phase space density

Jo( Eq ) f1(Ens) exp(—E,, /T) exp(—E., /T)
exp(—Ey/T) exp(—E}/T)
(B Y {Ep), (89)

where fJ3(E) = exp(—E/T). Since the phase space densities depend only upon

I

Ey and Ej, the phase space integrals over p,, and p,, can be done, yielding
{lt|oy3—ry)- The integrals over py and p; yield either ny or ni}. The Boltzmann
equation then becomes

SIn the absence of Boae condensation or Fermi degeneracy, Maxwell-Boltsmann statistics should
be a good approximation, and will be employed unleas ctherwise indicated.
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It is straightforward to include other processes in the same manner. Including all
possible final states for ¢ annihilation results in

tiy + 35my = (0§)" = 3] (oloa), (o1)

where 0,4 is the total Y4y annihilation cross section. In most cases the non-
relativistic form of ¢4 will have a simple dependence on the temperature, and
the temperature dependence can be parameterized as

(olow) =00 () - (92)

The terms in Eq. 91 have a simple explanation. The term proportional to —n}
represents the decrease of  due to ¢ annihilation. The term proportional to
{ng)? represents the increase of ¢ due to collisions of the s in the thermal bath.
The Boltzmann factor in ng in the NR limit is reflects the fact that at T < M,
it becomes exponentially unlikely that a collision of two ~’s will have sufficient
energy to create a 3 pair. Note that if the creation and annijhilation rates are
fast enough (greater than H), ny will be driven to its equilibrium value.

It is convenient to express Eq. 91 in terms of the dimensionless quantities
Y, =ny/s, s = M/T
dY -
75 = —0.26g) 'mpMz*{|v|0.,) (Y1 - Y;‘;) . (93)
In the non-relativistic (NR) limit (x > 3) and in the extreme relativistic (ER)
limit (z < 3) Y,; has the limiting forms
_ ] (x45gy/214g.) z4 3 (04)
“ (459, /2740,) (7 /8)} /22 P exp(—2) z > 3,

where gy is the number of spin degrees of freedom for 1, and x is ¢(3) (3¢(3)/4)
for Bose {Fermi) statistics.

In general there are no closed-form solutions of Eq. 93. However some approx-
" imate solutions may be obtained quite easily. Y will track the equilibrium value
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Figure §: The evolution and freeze out of a massive particle

until freeze out. Freeze out will occur when the density of 4 hecomes so small that

the rate of ¢ annihilation (Tunomiation = ne{|v|04)) becomes less than H, and the
temperature becomes so amall that the rate of 1 creation (Tereation = ngd{[vioa))
becomes less than H. After this time y’s are neither created nor destroyed, and
ny o« R~ If the entropy is also conserved, s o R~3, 8o the value of ¥ after
freeze-out, Y, will be constant in the expansion. The typical behavior of Y is
shown in Fig. 5.10

The value of z at freeze out, z;, can be found by equating I'ccenrion and H *

45 (m\1/? -
Iy = In {(ﬂ. + l)m (E) 0.269*9', IMp;MO’u}

—fn+ %) In [ln {(n + 1)% (2) * 0.260,07 ‘mp:Moo}] +.- (95)

Substituting x, into the NR expression for Y,, gives ’

%In the following, it will be sasumed that decoupling occurs when the ¥ is non-relativistic.

TThere is of course an ambiguity in the definition of zy. Freese ont could be defined when

I' = any number x H. The constant has been chosen to give the best fit to the numerical
resulis. 11



X

n+ 1)g
Y, ~ ( - ) ¥ ?-!-1. (93)
0.269; mp;M o

As an example, consider the annihilation of nucleons and antinucleons in the
early Universe. For NN, the annihilation cross section can be parameterized as
oo = em 2, where m, is the pion mass and ¢ is a constant. Since the annihilation
is exothermic, n = —1/2. If g, = 15 is used, z; ~ 40+ In¢ and Y,, = 6 x 107"%¢"1.
Today, Y. = 4 x 10 °Q1gh?, 50 the above result is wrong by a factor of 10'°. The
calculation is correct, and in fact agrees quite well with the numerical result. The
discrepancy between the prediction and the observation implies that the nucleon
system does not satisfy one of the assumptions. If there is an asymmetry in
the number of nuclecns and the number of antinucleons the above formalism is
incorrect. The leszon is that there must have been such an excess of nucleons
relative to antinucleons before NN annihilation. The annihilation shut off when
the antinucleons were used up, and the nucleons we observe today were the ones
that could not find antinucleons to annihilate.

2.2 Light Stable Neutrinos (M < 1 MeV)

Light neutrinos decoupled when the temperature was about 1 MeV. After neu-~
trino decoupling, e* annihilation increased the temperature of the photons relative
to the neutrinos by a factor of (11/4)'/3. The present number density of each light
neutrino species should be

- 3¢(3) TS = 39, 4 gv s

= — = 109— . o7
TIPS ™ g (07)

If the light neutrino has a mass greater than T, ~ 1.9 K ~ 1.6 x 10~* eV, then the
present energy density of the neutrino would be p, = Mn,,, which would contribute

to {I an amount

0,47 = 1.03 x 10~ (e%) (5'2—') . (08)

Since there is an observational limit on the maximum value of {1, there is & maxi-
‘mum value of M



M < 9686V (g) (n8)_ . (99)

This limit is known as the Cowsik - McClelland ¥ bound. 8

2.3 Heavy Stable Neutrinos (Mz > M > 1 MeV)

If neutrinos are NR at decoupling, Eq. 96 gives the final abundance. Neu-
trine annihilation proceeds through Z exchange to final states ii, where i =
vi, e, g, 7,6, d, s,++« Here vy, denotes a light neutrino. For T < M < M3,
the annihilation cross section depends upon whether v is a Dirac or a Majorana
particle

(vlondoime = 2L 50— sty [103 + G3) + 203 - c3)] (100)

GLM?

(I”ICA)MOJIOFCM = - '?)lfl [(C;. + C‘?")sﬂflz + Ci'zz,’] ’ (101)
where z; = m;/M, 3 is the relative velocity, and Cy and C, are given in terms
of the weak isospin, electric charge, and the Weinberg angle by C4 = #3, Cy =
Js — 2g8in® By,

In the Dirac case, oy = cG}M?/2x, n = 0,g, = 60, and ¢ is a constant = 5.
The value of z; and ¥, is

It

xy 254+ 3ln Mgey +Inne
- 3 1
Yo =~ 107% M7, ( + 35 In Mgy + % lnc) , {102)

where Mg,w = (M/1 GeV). If g, = 2, the present neutrino energy density, and
the contribution to {1 would he

o =~ 5.7 x 10°MZ3, (1 + zislnMg.v) eV cm™?

14

n.A? 54M32, (1 + ;g In MG.V) . (103)

®In the original paper of Cowsik and McClelland, they assumed two four-component neuntrinos
with the same mass (g, = 4), b = 1/2, and T}, = 2.T K, which gives M < & oV for their assnmed
upper limit of {1 = 8.8.
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Figure 6: The contribution to 3,h? from a neutrino of mass M

For the Majorana case, £1,h? is similar to Eq. 103 with 5.4 — 18. The limit on
M that results from Eq. 103 is usually referred to as the “Lee - Weinberg” bound
(although it was discovered simultaneously by several people).')

The contribution to {3,h? as a function of M is shown in Fig. 6 for Dirac and
Majorana neutrinos. The exact limits on M depend on the value of (.53 e If
h=1/2 and 1, < 0.9, then M < 21.8 eV for light neutrinos, or M > 5 GeV (9
GeV) for heavy Dirac (Majorana} neutrinos.

The above limits have been found assuming M < Mz and the chemical poten-
tial of the neutrinos are zero. It is trivial to find the limit if M > Mgz, or if the
chemical potential is large.

2.4 Heavy Unstable Neutrinos

The above limits on the mass of neutrinos ¢an be evaded if the neutrinos are
unstable.l? The energy density of massive particles decreases in the expansion as
R-%, while the energy density of massless particles decreases as R4, which leads
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10 par/pr = (1 + z}. If 2 massive neutrino decayed at a redshift zp into massless
particles, ® the contribution of the massless decay products to {3432, denoted {Iph?,
would be smaller than the contribution to 1A? if the neutrino had not decayed
{dencted as 01,4%) by a factor of 1+ 2p. In terms of the neutrino mass M

Dph* = Qh%1 4 2p)7!

1.03 x 107 M,y(1 + zp)~! light neutrinos
5.4Mz% (1 + 2p)™! heavy Dirac neutrinos (104)
18Mg2, (1 + zp)? heavy Majorana neutrinos,

The requirement that f1ph? is less than some maximum value places a limit on
1+ 2p, of {again picking & = 1/2, {1p < 0.9)

(M/21.8eV} 21.8V < M <1 MeV
1+2zp> 4 (5GeV/M)* 1MeV <M <5 GeV (105)
(18GeV/M)? MeV < M <18 GeV.

The limit on 2p can be converted to a limit on the age of the Universe at decay
(i.e., the neutrino lifetime). **! This lifetime is shown in Fig. 7.

The limits in Fig. 7 obtain for any decay mode of the neutrino, even if the
decay products are “invisible”, e.g., light neutrinos. However if the neutrino decay
products include “visible” particles, such as «, e*, pions, etc., much better limits
can be placed. The limits will depend on the epoch of decay. Decay at five different
epochs will be considered.

Before discussing the limits, it is useful to calculate the time at which the energy
density of the massive neutrino would dominate the energy density in photons. The
energy density in photons is p, = (x?/15)7%, and if the neutrinos are NR, their
energy density is p, = Yo Ms. The energy densities are equal at 7 ~ 3Y, M,
using g; = 4. For heavy neutrinos Y, is given by Eq. 102, and for light neutrinos,
Yo = 135¢(3)/44x* = 0.04, again using ¢! ~ 4. Therefore the neutrino energy
density will exceed the photon energy density at T/M < 0.1 for light neutrinos,
and T/M < 6 x 10-M)y, for heavy neutrinos. Using ¢ = 1 sec/T3,y for the age
of the Universe, the age of matter domination by the massive neutrinos is given
by

%1t is assumed that the decay is instantaneous. Integrating over an exponential decay probability
does not significantly change the results.
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Figure 7: Limit on the neutrino lifetime from the energy density of the Universe
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ol V-2 [ :
(sec) = 1 (M; /1eV)~2 light ne.utrlrfos (106)
108M:L, heavy neutrinos.

e ty =~ 3 x 10"7gec, < r: If the lifetime is greater than the age of the Universe,
the decay products will contribute to the background photon flux. The line will be
narrow, since the cold neutrinos have a small velocity characterized by the velocity
dispersion of galaxies, {v?)!/? ~ 10~2, The photon flux from v decay will be

& ntpr 110°

n, = 100 em™
s (107)

107! erg/erg cm’sec
102M:3, r21 erg/erg em’sec n, =~ 1072M;3, cm™

The cbserved photon background is shown in Fig. 8. A very rough limit of

1MeV

< [ =1
°< (3

can be placed on the contribution of neutrino decay products to the photon back-
ground. Requiring that the contribution of Eq. 107 is less than this limit gives
the limit on 7 in this lifetime range of (Myy = M/eV) 18

) erg/erg cm’sec, (108)
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10"M,y  light neutrinos
w2l e . (109)
10¥Mz., heavy neutrinos.

e, = 2 X 10%ec. < 7 < f: If the neutrino decays safter recombination,
but before ty, the photons will not scatter and ehould appear in the photon back-
ground. If T > M at the time of neutrino decay, the Universe would not yet be
dominated by the massive neutrino, and the massless decay products will have
an energy density less than that in the MBR, and escape detection. Thus, any
lifetime in the range ¢, < r < ty is forbidden if T < M at decay. ¢

The forbidden region in (r, M) where decay of the neutrino would result in a
photon flux in excess of the observed limit is indicated as region A in Fig. 9. Also
shown in Fig. 9 is the region marked MDU, which is the disallowed region from
Fig. 7.

® tiberm =2 10%8sec. < 1 < £,,.: If the neutrino decays before recombination (and
M > T}, the photons from the decay can scatier with electrons, which can, in
turn, scatter with the photons in the MBR, leading to unacceptable distortions in
the spectrum. However, if the neutrinos decay early enough, the initial distortions
in the MBR can be re-thermalized. The time for the relaxation to a thermal
spectrum is determined by the croes section for additional photon production
through < + ¢ — 4 + 7 + ¢. The cross section for the double Compton process is
srnaller than the cross section for single Compton process, 80 fiuerm = 10%sec. <
tyec. The forbidden region in (r, M) where distortions of the MBR will result is
indicated as region B in Fig. 9. 1

® tend nuctes = 3 min. < 7 < tiperm: If the neutrino dominates the Universe and
decays before fsaum, the present MBR is due to the photons produced in neutrino
decay. The photons from neutrino decay increase the entropy of the Universe
{the neutrino was “out of equilibrium” at decay). This increase in entropy after
nucleosynthesis means that n during nucleosynthesis was larger than n today,
and the success of primordial nucleosynthesis is lost. It is also possible that the
high-energy photons from neutrino decay destroy the light elements produced in
primordial nucleosynthesis.’” The forbidden region in (r, M) where the entropy
produced in neutrino decay decreases n below acceptable values is indicated as
region C in Fig. .19

@ thegin nuctes = 18€C. € 7 < fend nucteo? If the neutrino lifetime is longer than
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Figure 9: Cosmological limits on the mass and lifetime of neutrino decay to visible

modes
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about 1 sec., the neutrino can dominate the mass of the Universe during nucleosyn-
thesis, leading to an increase in *He production. The forbidden region in (r, A)
which would lead to an overproduction of primordial *He is indicated as region D
in Fig. 9.9
Neutrino decay into visible modes would also have other “astrophysical” effects.!®l
Type Il supernovae are a source of neutrinos. They explode with a frequency of
about fgn = 1 per galaxy per century, releasing about 10%ergs of energy in neu-
trinos of energy E, =~ 10 MeV (i.e., about N, = 10%" neutrinos). If the neutrino
decays to photons withi a lifetime greater than the age of the Universe, they would
_ contribute to the v-ray background flux '
ty ty ooy .-

F., = Ny!anGtUF = 607cm 25 1lpr 1, (110}
where 1! is the lifetime in the rest frame of the Universe, ' = rE/M, and ng is
the number density of galaxies. If F, from neutrino decay is less than observed
(Fy(observed) < 1072 cm~? 87! sr~!), the lifetime must satisfy r* > 10*? gec., or
T > 10'*M,y sec. This limit has assumed that the neutrino is light enough to be
produced in the explosion (M < 10 MeV), and decays outside of the exploding
star (r' > 10%ec., or r > 10~3M,y sec).20

The same argument may be used for white dwarfs.}¥] They occur with a fre-
quency of about 1 per year per galaxy, releasing about 10%® neutrinos of energy 100
keV. In order that the decay products of the neutrino give an X-ray flux smaller
than the observed flux of 107! em~2 8! ar~%, requires 7 > 3 x 10'® M,y sec.. The
forbidden region in (r, M) is shown in Fig. 10.

The combination of cosmological and astrophysical limita provide information
and limits on neutrino properties that are not accessible to accelerators.

2.5 Conclusiona

The decoupling and survival of neutrinos have been considered in detail, and
limits on the mass and lifetime of massive neutrinos have been derived. Many
of the techniques developed for neutrinos can (and have) been applied to other
particles. There are some quite general comments that can be made. First, 2, is
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Figure 10: Astrophysical limits on the mass and lifetime of neutrino decay to
visible modes
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pretty much model independent, and is usually in the range 25-40. The dependence
of z; on the mass, cross section, etc., is only logarithmetic. ¥, on the other hand,
is proportional to M~! and o5'. For fixed M, Y., increases as o, decreases. This
is obvious, since as the cross section decreases, the particles will be less efficient
in annihilation. The dependence on M, however, can be more complicated. If
oo is independent of M, Y, « M™%, In many cases, however, oy will depend on
M. There are examples where ¢q oc M™%, In this case, ¥, « (May)™! « M.
There are also examples (such as massive neutrinos) where oo o« M*2. In this
case, Yo, ox (Map) ™! oc M2,

With the assumption that o ig independent of M, that the fossil particle is
stable, and that it gives a definite contribution to 11, the value of ap is almost
uniquely determined. Consider a Majorana particle B of mass M. If it freezes out
when g, = 75, with oy = a x 1073 cm?, then

1 1
37 — — = 37pM/*
zs 1+ a7 In Ma.v + 371110.

1.8x3

- Wpr=1 .—1p
mhr = 8 X 10 Mla'h (111)

Yo

The contribution to {T1A? from B is

g = 1‘4:‘"’ = 0.225a"16h2, (112)
C

which is independent of M. f a = b = 1, A = 1/2, then {lg = 0.9. Since we
know from nucleosynthesis that the contribution to {1 from nucleons is about 0.1,
N1z = 0.9 could be the dark matter necessary if flrorar = 1. A cross section of
this magnitude is “weak”, and could be relevant for a variety of proposed particles,
such as the ones from the supersymmetric zoo.

As shown above, if {lg = 0.9 the annihilation cross section is determined.
The annihilation cross section also determines the rate of annihilation of E in the
present Universe. The possibility of present annihilation of BE’s in the galactic
halo, in the sun, and in the earth has been explored. It may be possible to detect
the annihilation products, either as photons from annihilation in the halo, or as
neutrinos from annihilation in the sun or earth. The annihilation cross section is
also related to the scattering cross section of B as it passes through matter. A cross

‘gection of 1073 c¢m? may be large enough to detect cosmic-ray B’s by bolometric

or other low threshold detectors.



479

3. THE EVOLUTION OF THE VACUUM

One of the most important tools in building particle physics models is the use
of spontaneous symmetry breaking (SSB). The proposal that there are underlying
symmetries of nature that are not manifeat in the vacuum is a erucial link in
the unification of forces. Of particular intereat for cosmology is the expectation
that at the high temperatures of the big bang, a symmetry that is broken today,
will be restored, and that there is a phase transition to the broken state. The
possibility that topological defects will be produced in the transition is the subject
of this section. The possibility that the Universe will undergo inflation in a phase
transition will be the subject of section 4.

Before discussing the creation of topological defects in the phase transition,
some general aspects of high-temperature restoration of symmetry and the devel-
opment of the phase transition will be reviewed.

3.1 High Temperature Symmetry Restoration

To study temperature effects, consider a real scalar field described by the La-
grangian

1
£=3(8:9)(0°9) - V(#)
1, a0 1, .,
V($) = -3 M8 + 2a¢t. (113)
This potential is shown in Fig. 11. The minima of the potential (determined by

the condition 3V /3¢ = 0}, and the value of the potential at the minima are given
by

(#) = 2
vV{{¢) = M (114)
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Figure 11: An example of the potential for a model with S8B

Presumably, the ground state of the system is either +{¢} or —{¢} and the reflec-
tion symmetry ¢ — —¢ present in the Lagrangian is not respected by the vacuum
state. When a symmetry of the Lagrangian is not respected by the vacuum, the
symmetry is said to be spontaneously broken.

From the definition of the stress tensor in terms of the Lagrangian
Tpv == p¢av¢ - Egpva (115)

the energy density of the vacuum is

(Too) =pv = —L =V(9) = — . (116)

The contribution of the vacuum energy to the total energy density today must be
smaller than the critical density pc = 1.88 x 1072%42 g em—3 ~ 10~* GeV*. Since
this number is so small, it is tempting to require py = 0. This can be accomplished
by adding to the Lagrangian a constant factor of +M*/4). This constant term
will not affect the equations of motion, and the sole effect will be to cancel the
'present vacuurn energy.



481

There are several ways to understand the phenomena of high-temperature
symmetry restoration. The most physical way is to express the effective finite-
temperature mass of ¢ as the zero-temperature mass, —Af?, and a plasma mnass,
Myiaime = aAT?, where a is a constant of order unity. If M3 = —M’+M’¢m <0,
the minimum of the potential will be at ¢ # 0 (SSB), while if M3 = —M? +
M,ms = 0, the effective mass term will be positive and the minimum of the
potential will be at ¢ = O {symmetry restored). There is a critical temperature,

T. = M/{a))!/? above which (¢} = 0.31

A more rigorous approach to symmetry restoration is to account for the effect
of the ambient background gas in the calculation of the higher-order quantum
corrections to the classical potential. The finite temperature potential will include
a temperature-dependent term that represents the free energy of ¢ particles at
temperature T'. To one loop, the full potential is??

Ve(#) = V(8) + oy [ detin [t - expl-(a? + w7 (117)

where V(¢) ia the zero-temperature one-loop potential, and u® = —M? + 3X¢2. At
high temperature, Eq. 117 has the expansion

Vi(g) =V(g) + — T‘+ T’é’ (118)

The term proportional to T* is minus the pressure of a apinless boson, which
should be the leading contribution to the free energy, and the second term is the
“plasma” mass term for ¢. Eq. 117 has a critical temperature, T, = 2M/AV/2,
above which the symmetry is restored.

The temperature dependence of Vr(¢#) is shown in Fig. 12. The phase transition
from the symmetric to the broken phase can be either first order or higher order. If
st T, there is a barrier between ¢ = 0 and the SSB minimoum ¢ = &, the change in
¢ will be discontinuous, signalling a first order transition. If no barrier is present
at T,, the change in ¢ will be continuous, signalling a higher order transition.

In general, at some temperature T < T, the ¢ = 0 phase is a metastable phase,
and this phase will be terminated by the decay of the false vacuum by quantum or
thermal tunneling. Here, quantum tunneling will refer the zero-temperature part
of the tunneling rate.
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Figure 12: The temperature dependence of Vr(¢)

The quantum tunneling occurs by the nucleation of hubbles of the new phase.
The probability for bubble nucleation is calculated ** by solving the Euclidean
equation of motion 10

Oed—V'($) = 5L + V- V'(g) =0 (119)

(where V' = dV /d¢) with boundary conditions ¢ = 0 at 7% + ¢ = co. The
probability of bubble nucleation per unit volume per unit time is

I = Aexp(—Sg) (120)
where Sg is the Euclidean action for the solution of Eq. 119
sl0) = [ a2 [ (%) + Leoar +V(¢)] . (121)

The calculation of the constant A is quite complicated, but for most applications
a guess of A on dimensional grounds will suffice.

1%9The tunneling rate is uxloe'nted. with a classical motion in imaginary time because the decay
rate is related to the imaginary part of the energy. This is because the wave function oscillaies
in the classically allowed region, but is exponentially damped in the classically forbidden region.
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Of the many possible solutions to Eq. 119, the one with least action is the
most important. The least action solution has O(4) symmetry, and the Euclidean

equation of motion becomes

d’d» 30‘4&
Tty Ve = (122)
with boundary conditions ¢ = 0 at v = 2 + £? = 0o and d¢/dr = O at r = 0.
In general solutions to this equation can not be found. However in the “thin-
wall” approximation, where the difference in energy between the metastable and
true vacua are small compared to the height of the barrier, the “damping” term

proportional to d¢/dr can be neglected. The solution for Sg is then simply

s5= [ a2V (). (123)

The tunneling rate at finite temperature® can be found following the above
procedure, remembering that field theory at finite temperature is equivalent to Eu-
clidean field theory with the time periodic with period T'~!. The finite-temperature
tunneling rate is found by solving the equation of motion (only considering the
least-action solution, which in this case has O(3) symmetry)

&£é 2@

whete ¢ = . The finite-temperature tunneling rate is
S,
rr == A? exp(—S;/T), (125)

where S is the three-dimensional action of the solution of Eq. 124

si= [ &'z [3(87 +al9) . (126)

3.2 Domain Walls

The simple model of the previous section can be used to demonsirate domain
walls.?% The Lagrangian can be written in the form



1 1 2 3 _ M?
L= 5(3#4")’ - ;f\(‘ﬁ’ —{&% @ =0'=—. (127)

i

The Z; symmetry of the Lagrangian is broken when 4 obtains a vacuum expec-
tation value ¢ = +¢ or ¢ = —o. Imagine that space iz divided into two regions.
In one region of space ¢ = +o, and in the other region of space ¢ = —o. The
transition region between the two vacua is called a domain wall. Domain walls
should be produced, for instance, in the nucleation of bubbles. The bubblés of
true vacuum will be either ¢ = +o or ¢ = —g, with equal probability.

Imagine a wall in the 2 — y plane at 2 = 0. At z = —o00, ¢ = —0o, and at
z = +00, ¢ = +0. The equation of motion for ¢ is

D¢+ Ad(¢? — o) = 0. (128)

The minimum energy solution to the equation of motion, subject to the boundary
conditions above, is

¢w(z) = otanh(z/A) (129)

where A is the “thickness” of the wall, given by A = (A/2)"/3¢~1. This solution
is illustrated in Fig. 13.

The finite, but non-gzero, thickness of the wall is easy to understand. The
terms contributing to the energy include a gradient term and a potential energy
term. The gradient term is minimized by making the wall as thick as posaible,
and the potential term is minimized by making the wall as thin as possible, i.e.,
by minimizing the distance over which ¢ is away from o. The balance between
these terms results in a wall of thickness A,

The stress tensor of Eq. 115 with ¢ = ¢y is
T, = %o‘ cosh™¢(z/A)diag(1,1,1,0). (130)

The energy density in the wall as a function of 2 is shown in Fig. 14.

From the stress tensor it is possible to define a surface tension for the wall,
7 = Ty%z = (4/3)(1/2)"/6°. It is also obvious from the stress tensor that since
- the (ii) component ie equal to the (00) component, the gravitational interaction of
the infinite wall will be non-Newtonian. This can lead to some strange interactions.
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Figure 13: The solution for an infinite wall in the z — y plane
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Figure 14: The energy density in the wall as a function of z
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For instance, two infinite walls in the = — y plane will repel each other. This
strange gravitational behavior only obtains for infinite and straight walls. The
gravitational field at large distances from a spherical wall of radius R, would be
that of a massive particle of mass m ~ R.

The existence of domain walls can be ruled out today simply on the grounds
of their contribution to the total mass of the Universe. A domain wall with R ~
Riortson = Hy? 2 10%cm would contribute & mass of Mue = nR? , = 109%rams.
This would be about a factor of 10° larger than the total mass within Ryonson-

The simple mode] of this section had domain walls because of the existence of
disconnected vacuum states. The general condition for the existence of domain
walls in the symmetry breaking § — ¥ is that TIo(M) # I, where M is the manifold
of equivalent vacuum states M = G/, and ITp is the homotopy group that counts
disconnected components. In the above example, § = Z,, ¥ = I, M = Z, and
Ho(M) =2, # I.

3.3 Cosmic Strings

A simple model that demonstrates the existence of cosmic strings is a gauge
version of the model of the previous section. For a review of stringa, see Refs.
+ 2637, The Lagrangian of the model contains a U; gauge field, A,, in addition to
the complex Higgs field, ¢,

L=Du$D*$ - (FuP™ - N6 — @)V (@ =oexplis)  (131)
Again, 0? = M?/), and
Fu = 3,4, - 8,4,

D¢

A —dedyd. (132)

Since there is a local gauge symmetry, 8 = #(%), can be position dependent.
Since ¢ is single valued, the total A# around any closed path must be an integer
multiple of 2z. Imagine such a closed path with A# = 2x. As the path is shrunk
. to a point (and no singularities are encountered), Af cannot change from A§ = 2r
to A# = 0. There must therefore be one point contained within the path where the
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phase # is undefined, i.e., (¢) = 0. The region of false vacuum within the path is
part of a tube of false vacuum. These tubes of false vacuum either must be closed
ot infinite in length, otherwise it would be possible to deform the path around the
tube, and contract it to a point without encountering the tube of false vacuum.
It will turn out that these tubes of false vacuum have a characteristic transverse
dimension far smaller than its length, so they appear as one-dimensional objects

called “strings.™ 14

The string solution to the Lagrangian in Eq. 131 was first found by Nielsen
and Olesen.? At large distances from an infinite string in the z-direction,

¢ — oexp(ind)
A, — —ie 19, [In(¢/0)], (133)
where ¢ is the angle in the z — y plane. Note this choice of A, and ¢, is a finite
energy solution, since at large distances from the string, D¢ — 0 and F,,, — 0.

For an infinite string in the z-direction, the etress tensor takes the form
T,” = ub(x)é(y)ding(1,0,0, 1), (134)

where 4 is the mass per unit length of the string (string tension) given by u = 3.

Far from a string loop of radius R, the gravitational field of the string is that
of & particle of mass Mying = HRuiring. For a string that stretches across the
present horizon, the mass would be Mg = 10'*(0/GeV)? grams. Cosmic string
networks may have very interesting astrophysical consequences, including acting
as seeds for the formation of large-scale structure.

String solutions will be present in the symmetry breaking § — ¥, if the man-
ifold of degenerate vecuum states M = §/¥ contains unshrinkable loops, i.e., if
the mapping of M onto the circle is non-trivial. This is formally expressed by the
statement that string solutions exist if II;(M) # I. In the above example § = U/,
was broken, M is a circle, and IT; (M) = Z, the set of integers.

3.4 Magnetic Monopoles

11There shonld be no confusion between the [coemic} strings considered here, and superstrings.
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Domain walls are two-dimensional topological defects, and strings are one-
dimensional defects. Zero-dimensional defects appear in theories with SSB as
magnetic monopoles.?®] For a simple model that illustrates the existence of mag-
netic monopoles, consider an 50, gauge theory with a Higgs triplet field ¢°

L= % e Dhg® — %F’;,F“" - ;A(¢“¢" - (@)P=es,  (139)

where & is an isovector in the SO; space of magnitude ¢ and direction & (5 is a
unit isovector), Here

F :, = d,A; - a,4; — CsmA:. AS,

D ¢" 8u9" — eca AL, (136)

Since the theory has a local gauge symmetry, o is a constant, but 4 can be
a function of Z. Imagine a configuration in which at one point ¢* = ¢(0,0,1),
at another point ¢* = ¢(0,1,0), at another point ¢* = ¢(1,0,0), and so forth.
The lowest-energy configuration has ¢* = constant, and the z-dependence of ¢°
can in general be gauged awey. However there are configurations that cannot be
deformed into a configuration of constant & by a finite-energy transformation. An
example of such a configuration is the “hedgehog™ configuration, in which & = £,
where ¥ is the unit vector in the radial direction. But for the obvious angular
dependence, the solution is spherically symmetric at r — oo

(rt) — of
AL(rst) — euufyfer. (137)
The magnetic 8eld at r — co corresponding to the hedgehog solution is

.1 pepn
B.- = Eé‘ijkf?g = ?a (138)

which is the magnetic field of a magnetic charge of ¢ = 1/¢. The mass of the fleld
configuration is Muenopol == @/e.

There have been many experiments to look for magnetic monopoles. The limit
on the average number density of magnetic monopoles in the Universe depends
upon the properties of the monopoles (mass, charge, proton decay catalysis, etc.).
If magnetic monopoles exist, they would have a multitude of astrophysical conse-
quences.
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Monopoles will be present in the symmetry breaking § — X, if the manifold of
degenerate vacuum states contains unshrinkable surfaces, i.e., if the mapping of M
onto the two-sphere is non-trivial. This is formally expressed by the statement that
monopole solutions exist if TTa(M) # I. In the above example § = §0,, ¥ = U,
and TI3{M) is the set of even integers.

3.5 The Kibble Mechanism

The existence of the above topological defects is a prediction of many gauge
theoties with SSB. They are inherently non-perturbative, and cannot be produced
in high energy collisions. The only place they can be produced is in phase tran-
sitions in the early Universe. Although monopoles, strings, and domain walls are
topologically atable, they are, of course, not the minimum energy solution. How-
ever the production of the defects in the phase transition seems unavoidable. The
mechanism for the production of the defects is known as the Kibble mechanism.?®

The Kibble mechanism is based upon the fact that in the phase transition the
correlation length is limited by the particle horizon. The particle horizon is the
maximum distance ovet which a massless particle could propagate from the time
of the bang. Imagine that a particle is emitted at coordinates (t =0, r =rg, § =
0, ¢ = 0) and is detected at the origin of the coordinate system at coordinates
(t=t, r=0, 8=0, ¢ =0). As before, rg is given by

R(t' f (- rt)m = TH (139)

The coordinate rg by itself is just a label. The proper distance to the horizon is
given by dg = R(¥)ry, so

= R(t) f . (:- © (140)

If Rxt® (n>1), thendg = (1 -n)7't,

The correlation length in the phase transition sets the maximum distance over
which the Higgs field can be correlated. In general, the calculation of the corre-
lation length depends upon the details of the transition. However, the fact that
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the horizon is finite in the standard cosmology implies that at the phase transition
(t =t,, T =T,), the Higgs field must be uncorrelated on scales greater than the
horizen, so the horizon acts as an effective correlation length.

Imagine that at the phase transition the Higgs Beld is uncorrelated on scales
greater than £ = dg. The initial random nature of {¢) is damped (remember
Epa occurs for (¢} = constant). However there are Higgs configurations that are
topologically stable and will be frozen in as topological defects.

Consider monopoles as an example of the freezing in of topclogical defects.ll
The direction of the isovector Higgs field is random on scales greater than £. The
probability that a random orientation of (¢} will have a hedgehog structure is
about 0.1, so there should be about one monopole {or antimonopole) per 10 hori-
zon volumes, nj = 0.1d} = 0.1{mp;/T2)?, using the age of a radiation-dominated
Universe ¢t = mp;/T?. The entropy density at T, is s =~ T3, so the monopole-
entropy ratio is nas/8 = 0.1(T,/mp)*. Since monopole-antimonopole annihilation
is not important, if entropy is not created after monopole production, the above
monopole-entropy ratio should obtain today. For T, = 10¥GeV, my, = 1018
GeV as expected in grand unified theories, nys/9 =~ 10713, which gives the present
energy density in magnetic monopoles pmonopoien = 10 p¢. Obviously some mech-
anism must suppress monopole production, enhance monopole annihilation, or in-
crease entropy. An increase in entropy would also dilute the abundance of strings
and domain walls. It is possible that monopoles were diluted to a level accessi-
ble to observation, or that strings were produced after the dilution of monopoles.
Detection of monopoles or strings would provide unique information about both
particle physics and cosmology. In complicated gauge theories with several sym-
metry breaking steps there are often intereating hybrid creatures, such as domain
walls bounded by strings, strings terminated by monopoles, monopoles with strings
through them, etc. They all have unique signatures, and observation of them would
provide information about the steps of symmetry breaking.
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4. INFLATION

The cosmology developed in the first four sections (augmented with a model for
the growth of structure as discussed elsewhere in this book) provides a remarkably
simple and beautiful model to describe the Universe. Nevertheless, there are some
aspects of the standard picture that strongly suggests that the model is not a
complete one. After discussing the problems of the cosmology developed so far,
a possible solution to the problems will be presented. This solution goes by the

pame of “inflation.”32

4.1 Loose Ends of the Standard Cosmology

e Large-Scale Smoothness: The Robertson-Walker metric describes a space that
is homogeneous and isotropic. Why is space homogeneous and isotropic? There
are other possibilities, including homogeneous but anisotropic spaces, and inhomo-
geneous spaces. The most precise indication of the smoothness of the Universe is
provided by the microwavebackground radiation. If the entire observable Universe
was in causal contact when the radiation last scattered, it might be imagined that
microphyeical processes would have damped any fluctuations and a single temper-
ature would have obtained. However in the standard cosmology the distance to
the horizon increases with time. The size of the horizon is conveniently expressed
in terms of the entropy within the horizon

Sg = s%’di. ~ T3, (141)

The entropy within the horizon today is Sz (0) ~ 10°%. In a matter-dominated
Universe, Sg = Sg(0)(1 + 2)~¥2, while in a radiation-dominated Universe, Sg =
Sg(0)(1 + z)-%. The entropy in the horizon at recombination when the radia-
tion laat scattered was Sg(t = t,) = 10%3, The Universe as presently observed
consisted of about 10° causally disconnected regions at recombination, so causal
proceases could not have led to smoothness. At the time of primordial nucleosyn-
thesis, the entropy within the horizon volume was Sa(tnudeo) = 10%, or about
10~% of the present Universe.
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The firat untidy fact about the standard cosmology is that there is no physical
explanation for why the Universe is smooth.

o Density Perturbations; Although the Universe is smooth on large scales,
there is a rich structure on small scales. It is usually assumed that the structures
observed today were once small perturbations on & smooth background, and have
grown as the result of the gravitational instabilities in an expanding Univerase. The
relic photons did not take part in the gravitational collapse, and remain as fossil
evidence of the once-smooth Universe.

Density inhemogeneities are usually expressed in a Fourier expansion

(%) = (27)73 f by exp(—ik - Z)d°k. (142}

Here k is & co-moving label. The physical wavenumber and wavelength are related
to k by k= k/R(t), Aps = (2x/k)R{t). It is also convenient to express the
scale of the perturbation in terms of the mass in baryons contained within the
perturbation. For constant B, the baryon mass on scale X is proportional to
A%. The baryon mass within the horizon st time t is My(t) ~ m,Bsd}, x Sg.
The quantity usually referred to as {6p/p) on a given scale ia the r.m.s. mass
fluctuations on that scale

2
(f’}?)* = (@) B (143)

The exact nature of the perturbations required for galaxy formation is un-
known. A promising choice for density perturbations is that as every distance scale
comes within the horizon, the r.m.s. fluctuations in the density are 10~* — 10~5
independent of the scale. This is usually expressed as

(?)H ~ 1074, (144)

Here (6p/p)a is (6p/p) on the scale A = dy = ¢ at time ¢ = dj.

The evolution of the perturbations within the horizon is determined by local
Physics, e.g., the Jeans criterin. The behavior of the perturbations outside of
the horizon is complicated by the fact that there is a “gauge dependence” that
* reflects the freedom of the choite for a reference spacetime. Nevertheless, the
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growth of metric perturbations on scales larger than the horizon can be studied
by using the uniform Hubble flow gauge (time slices chosen to give constant H).
From the Friedmann equation with A constant, fluctuations in p are equivalent to
fluctuations in the spatial curvature k/R?

k 8rG
f|l=]<=6l—0>r]). 145
(R’) ( 3 ’) (148)
In a radiation-dominated (matter-dominated) Universe, p < R~ (R7%), so

R/R4~(1+2)? (RD)

R3/R®~(1+2)! (MD). (146)

(8p/p) x {

Since Sg o (1+2)? for (RD) and Sy o (1+2)*? for (MD), (6p/p) S o« MY?
for both (RD) and (MD). So as any scale comes within the horizon, the growth that
scale has experienced while outside the horizon depends upon the mass contained
in the scale as it enters the horizon

(2) ~(%2) v, (147)

]

where to is some arbitrary initial time. If (6p/p)o is proportional to M ~%3 as
each scale comes within the horizon, (6p/p) will be a constant. Larger scales have
smaller initial amplitudes, but they have a longer time to grow ouiside the horizon.
If (6p/p)o is characterized by a steeper spectrum, the first scales that come within
the horizon would have been non-linear. If (6p/p)o is characterized by a flatter
spectrum, larger scales would have larger (6p/p) at horizon crossing.

The standard model can shed no light on the origin of the density perturbations.
It must simply assume that at £ = 0 there are perturbations of the appropriate
magnitude and spectrum impressed upon the metric.

o Spatial Flatness - Age: In the standard Friedmann cosmology, 1 — 1 =
k/R*H?. In the past, H® « p, which for a matter-dominated Universe gives
H?! « R~3, and for a radiation-dominated Universe gives H* o R™*. Since today
|2 ~ 1| is of order unity, at previous epochs

1] = { B/Ro=(1+2)7  (MD) (148)

(B/Ro)*=(1+2)"* (RD).
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At the time of primordial nucleosynthesis, |1 — 1| < 1072¢, and at the planck
time |0} —'1] < 107%. Obviously I was very close to one at early times, i.e., the
curvature term was small compared to H? and 8xGp/3.

The smallness of the curvature term is necessary for the Universe to survive
28 long as it has without either re-collapsing (for k = +1) or becoming curvature
dominated (for k = —1). The natural time scale in the Friedmann equation is the
planck time tp; = 2 x 107*% sec. The difference between the kinetic term (H?) and
the potential term (8xGp/3) is the curvature term. This must be small in order
for the Universe to expand for 10'7 sec. ~ 10%¢g.

The standard Friedmann model has no explanation for the present spatial
flatneas of the Universe.

¢ Cosmological Constant: The most general form of Einstein’s equations in-
cludes a coamological constant

1
Ry = 2B = 87GT, + Agu. : (149)

With the stress-tensor in the perfect-fluid form (U, is the fluid velocity vector,
U, = (1,0,0,0) in the fluid rest frame)

Tw = =P + (0 + p)UU,, (150)

the effect of the cosmological constant is to add to the Buid contributions to g and
p, terms py = —p, = A/8rG. The generalized energy and pressure are given by
" = p+ pa, P* = p+ ps, and the Einstein equations can be written in terms of
T,., which is Eq. 150 with p — p*, p — P,

1 .
R, — Eg,‘,R = 8xGT,,. (151)

If p* and p* are dominated by ps and p;, the conservation and Friedmann
equations become

" o R"=constant
8xGp® A

3 3
" which has solution R « exp(Ht).

H = (152)
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Today the contribution of a cosmological constant to the energy density of the
Universe must be less than pc. In useful units, pc = 8.07 x 10~*74? GeV*. Among
the contributions to A are contributions from the condensates of Higgs particles
due to SSB. During cosmological phase transitions, the vacuum energy density
changes by o!, whete ¢ is the zero-temperature vacuum expectation value of the
Higgs field. This change in the vacuum energy is 10°GeV* for the electroweak
transition, and 10%GeV* for the GUT transition. A cosmological constant of this
order must be present before the transition to ensure that after all transitions are
complete the energy density of the vacuum is less than about 10-47GeV*E.

The standard cosmology cannot explain why the present vacuum energy density
is 8o small.

e Unwanted Relics: There are a variety of particles that are expected to survive
annihilation and contribute to the present energy density. Particles with very
large masses typically have very small annihilation cross sections and should be
abundant. This is rather unfortunate, as their contribution to the mass density
typically is many orders of magnitude larger than pc. The magnetic monopoles
produced in the GUT phase transition are an example of such an unwanted relic.

The standard cosmology has no mechanism of ridding the Universe of unwanted
particles,

The problems mentioned here do not invalidate the standard cosmology. They
are accommodated by the standard cosmology, but they are not explained. The
goal of cosmology is to explain the present structure of the Universe on the basis
of physical law, and one hopes that physical law will one day explain the above
points, Inflation is a model for such an explanation.

5.2 New Inflation - The Basic Picture

Consider as a model for new inflation33*] a phase transition associated with
SSB with a scalar potential given by

V(#) = IN# - o). | (153)

At temperatures T > T, = 20, (¢) = 0, and V({¢$)) = Ao'/4 = pv. At temper-
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atures T « T, (¢} = o, and V{{¢#})) = pvr = 0. New inflation will occur as ¢
makes the transition from the high temperature minimum of the potential to the
low ternperature minimum of the potential.

At some temperature T < T, in some region of the Universe, the Higgs field
will make the transition from ¢ = 0 to ¢ # 0. Assume that in this region of
the Universe ¢ is spatially uniform. The evolution of ¢ to the low-temperature
ground state is not instantaneous, but requires a time determined by the dynamics
of the theory. The equation of motion for ¢ can be found from T#, =0, where
T = ~3,60,¢ — Lgu,- With the assumption that ¢ is spatially homogeneous

$+3H+V'(¢) =0, (154)

where V' = 8V /0¢, and H? = 8xGp/3. The contributions to p include a radiation
term pg, & kinetic term for ¢, and a potential term for ¢:

P=pr+ —;és’ +V(4). (155)

If there is a “fat” region in V(¢), the evolution of ¢ will be “slow” and the ¢
term can be neglected in the equation of motion. In this flat region ¢ will change
very slowly and V(¢) will be roughly constant. Therefore the contribution to P
from V (4) will be roughly constant and will rapidly come to dominate pr which
decreases in proportion to R%, When p is dominated by potential energy the scale
factor increasea exponentially. If this flat region in the potential extends from ¢,
to ¢,, R will increase by an amount

R(¢.) = R(4,) exp(HAt), (156)

where At is the time it takes to make the transition from ¢, to ¢,, and H? =~
V(¢)/m3; =~ o*/m},. For a concrete example, assume for the moment, that At =
100H -1,

Now assume that after traversing the flat region in the potential, at ¢ > ¢, =~ o
there is a “steep” region in the potential. In this steep region the oscillations in the
zero momentum mode of ¢ will rapidly convert the potential energy to radiation.
If this conversion is efficient, the Universe will be reheated to a temperature Tqy
found by equating the potential energy density to the radiation energy density:
V(¢) = T*, or Tan =~ 0.
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This is the basis scenario for new inflation. To illustrate the scenario, take
¢ = 101GeV, and the initial size of the region to be the size of the horizon at
T., Ri = H™' = mp;/0® = 10"Pcm. ? The initial entropy in this region is S; =
(RiT;)® ~ 10™. The final size of the region in the example where At = 100H~ is
R; = exp(100)R; = 3 x 10™cm. With efficient reheating Tpn = o, and the final
entropy contained in the region is §; = (R,Tgn)® = 1014

This large creation of entropy has helped with three ont of four problems.
Large-Scale Smoothness: At T = 10GeV, the presently observable Universe
(S = 10%) was contained in a size of 10cm, and easily fit within the smooth
region after inflation. Density Perturbations: To see how inflation generaies den-
sity perturbations it is necessary to treat the dynamics of the scalar field in greater
detail than done so far. This will be done shortly. Spatial Flatness - Age: After
inflation R has increased by exp(100) but the final temperature is close to the
initial temperature. Thus, immediately after inflation the spatial curvature term
k/R? is a factor of exp(—200) smaller, while the energy density term is unchanged.
Cosmological Constant: Inflation does not help the cosmological constant prob-
lem. Unwanted Relics: The number density of particles present before inflation
is decreased by a factor of R}/R} = exp(—300). This is true also for the original
photons. It is crucial to create entropy in the termination of inflation.

In this example it was assumed that the slow-roll period lasted for 100 e-folds.
The minimurm number of e-folds is the number required to fit the observed entropy
of 10° into a single inflation region. The final entropy in the inflation region is
Sy = T3y R}. The size of the final region is related to the number of e-folds by R} =
exp(3N)R?, assuming little or no growth during the oscillation phase. The largest
possible smooth initial region is the size of the horizon at the phase transition,
R; = HY(T.) =~ mp;/o?, assuming 7. = . The maximum reheat temperature is
Tan = 0, 80 the final entropy is Sy = o3 exp(3N)m}, /o® = exp(3N)m}, /0. The
requirement S; > 10° gives

N > 58 + In(0/10"GeV). {157)

13]; is reasonable to expect ¢ 10 be niform on scales that are in cansal contact.
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5.3 Dynamics of Inflation

The evolution of the spatially homogeneous scalar field (zero momentum mode
of the scalar field) is crucial for inflation. If the coupling of the scalar field to other
fielda are included, the equation of motion for the zero-momentum mode of ¢ is
{¢ will denote the zero-momentum mode unless otherwise indicated)

¢+ 3H +Typ+V'(¢) =0, (158)

where Ty is the ¢ decay width. The decay width is typically Ty = h?my, where
k is a coupling constant, and my is the mass of ¢. 1* The energy density and
pressure of ¢ are given by
1.
pr = 4 +V(9)

ps = %&hV(é)- (159)

The “slow roll” regime is when the ¢ and I'y terms in Eq. 158 can be neglected,
and V($) is the dominant term in Eq. 156. The equation of motion during slow
roll is

3H$ = ~V'(9). (160)

Neglecting ¢ it consistent if
V*(¢)i < eH?
[V'($)mei/V(4)| < (487)'/2. (161)

These conditions will determine the duration of slow roll.

The number of e-folds of inflation while ¢ rolls from ¢, to ¢, during slow roll
is given by

N{¢1— ¢3) = : Hdt = -3 f: 5::(%) (162)

131t ia crucial to remember that my = 32V ($) /347 is & function of ¢, and will be small in the flat
region of the potential.




where dt = ¢~'d¢ = —3H/V'ds.

With p, given by Eq. 159, gy, = #¢ + ¢V'(4), and using Eq. 158, g, =
—3H¢? — T'4¢?. The two terms in the equation for g represent the change due to
the redshift of the kinetic energy in the ¢ field {proportional to H) and the change
due to decay of the ¢ field (proportional to I'y). When ¢ starts oscillating about
the minimum of the potential, the energy transfers between kinetic and potential
energy until § decays, Over an oscillation cycle (¢} = p,, and ¢? can be replaced
by py in the equation for gy. The energy from ¢ decay is transferred into radistion,
and the equation for the evelution of pp becomes pp = —4Hpr + Typy.

The equations for pr and g4 can be integrated to study reheating. If oscillation
about the minimum begins at ¢ = ¢; and B = R; with p;, = o*, the ¢ encrgy density
will decrease as

-3
pe=0'(5) expl-Tit -t (163)
Until decay, the ¢ energy denaity decreases in expansion as the energy density for
massive particles. When ¢ decays, the remaining energy is converted to radiation
(94 — (71/30)g.Tky). Obviously, the longer ¢ oscillates before decay, the less
energy will be available for conversion into radiation, and the lower will be the
reheat temperature. If the decay width is large compared to the expansion rate
at the start of oscillation, Hy ~ o®/mp,;, reheating will occur before damping
of py, and Tau = g+ /0. If the decay width is small compared to Hj, ¢ will
oscillate until the age of the Universe is equal to the ¢ lifetime, i.e., until I'y =
H = p:“/mp;. Then when p4 — g.Tiy, the reheat temperature will be Try =
g._l'“p:‘“ — g:”‘([‘,m;:;)‘“.

Now consider the generation of fluctuations in p. In the FRW radiation-
dominated Universe H~! o ¢, while during the slow-rollepoch, H~! & mp;/V (¢)? =
constant. If H is constant, the Universe in approximately in a de Sitter phase.
H~! gets the scale over which microphysical processes can act. H ! will be called
the “physics horizon.” * During the slow roll phase the physics horizon is con-
atant and physical scales increase exponentially. Eventually, physical scales once

14Note the difference between the "physics horizon” (H~!) and the particle horison, which is the
distance & massless particle propagates from the time of the bang. The physica horison is the
relevant quantity in calculation of perturbations.
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Figure 15: Physical scales cross the physics horizon twice

smaller than the horizon, will become larger than the horizon. After termination of
the slow-roll phase the Universe reheats, behaves like a FRW radiation-dominated
Universe, and scales outside the horizon will eventually come (back) within the
horizon. This double-cross of the physics horizon is illustrated in Fig. 15.

Notice that the last scales to go outside H~! during the de Sitter phase are
the first scales to come back inside H~! during the FRW phase. Ignoring the
o dependence in Eq. 157, the Hubble radius today (~ 3000 Mpc) crossed the
horizon 58 e-folds before the end of inflation. Any scale smaller than the Hubble
radius today crossed the horizon 58 + In{¢/10°GeV) + In{A/3000Mpc) e-folds
before the end of inflation. Using B = 10~!°, the mass in baryons inside the
horizon today is 10*1 M. Since B oc A%, any baryon mass scale crossed the horizon
58+1n(0/101*GeV)+ (1/3) In(M /10?1 M, ) e-folds before the end of inflation. Scales
that will eventually contain a galaxy mass (M = 10''Mg) crossed the horizon
50 e-folds before the end of inflation, while scales that will eventually contain a
galaxy cluster mass (M = 10"Mj) crossed the horizon 53 e-folds before the end

of inflation.

So far it has been assumed that the ¢ field is constant. However there are
. quantum fluctuations in ¢ due to the fact that during the slow-roll epoch the
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Universe is approximately in a de Sitter phase. If the fluctuationa §¢ are expreased
as a Fourier expansion

5¢=(25)" [ Sksguexp(ik - ), (164)
then the de Sitter fluctuations result in (note: Ag = Ad,)
z
(a9 = (am)Rlotult = () . (165)

These fluctuations obtain on scales less than the physics horizon during the de
Sitter phase. As each scale goes outside the hotizon during slow roll, it has fluc-
tuations (A¢)? = (H/2n)%. Since the energy density depends upon ¢, the fluctu-
ations in ¢ lead to fluctuations in p of §p = (3V/3@)A¢. Using p~ V ~ o* and
8V /3¢ = —3Hg, fluctuations in ¢ lead to

()-().

Once the acale is larger than H~!, it can no longer be affected by microphysics.
The behavior of the perturbation outside the horizon is gauge-dependent. However
the behavior outside the horizon can be characterized by a parameter ¢, given by

bp { p/p FRW aen)

=0 —3HpAP/¢* de Sitter.

When a acale comes back within the horizon during the FRW phase, ¢ is the
same as when it first went outside the horizon during inflation. Therefore, (5p/p)
relevant for galaxy formation is given by 1®

(), (252) - (5),

With the approximation that H and ¢ are constant during the slow-roll phase,
(5p/p) ns it re-enters the horizon will be scale free . In the slow-roll period,
¢ = —V'(¢)/3H, and the equation for (6p/p) becomes

£),-(75)

18There should be no confusion between the sub- H which indicates the quantity is to be evaluated
at the time of horison crossing, and the expansion rate H.




502

5.4 Specific Models

The first example considered is the original attempt to implement new in-
flation. The model is based upon a SU; GUT with symmetry breaking via the
Coleman- Weinberg mechanism.3?:34 The scalar field responsible for inflation (here-
after referred to as the inflaton) is in the 24-dimensional representation of $Us and
is responsible for the symmetry breaking SUs — SUz x SU; x U;. Let ¢ denote
the magnitude of the Higgs Beld in the SUy x SU, x U direction. The one-loop,

zero-temperature Coleman-Weinberg potential is
V(¢) = Bo*/2+ B¢* [In(¢ /0%) — 1/2], (170)

where B = 25al,,/18 =~ 107?, and 6 = 2 X 10'*GeV. Because of the absence of
a mass term, the potential is very flat near the origin (SSB arises due to one-loop
radiative corrections). For ¢ <« o, the potential may be approximated in the
slow-roll regime by

V($) = Bo'/2—rg'/4

A =~ [4BIn(¢*/e*)| ~0.1. (171)
For¢g <o
V(¢) =~ Bds'f2
s _ 8xGp  4xBot
B = == (172)

The critical temperature for this potential is about 10 GeV. The finite tem-
perature potential has a amall temperature-dependent barrier near the origin, and
it is not until T' = 10°GeV or so that this barrier is low enough that the action
for bubble nucleation drops to order unity. At this time the Universe will undergo
“spinodal decomposition” and break up into irregularly shaped fuctuation regions

within which ¢ is approximately constant.

Consider the evolution of ¢ in the alow-roll regime. Stow roll commences at ¢,
and ends at ¢.. The end of slow roll is determined by the condition |[V"{¢,)| = 9H?,
or ¢ = 3H?*/). For any ¢ in the region ¢, < ¢ < §,, the number of e-folds from
¢ to ¢, (tire ¢ to time ¢,) is given by



'. ‘t .
N(o—¢)= [ Hat= [ Hsdp. (173)
Using 3H¢ = —dV/d¢ during slow roll,

N$— )= —3;—: (31; - ;%) . (174)
The total number of e-folds in slow roll depends upon ¢,. To have enough infla-
tion, N(¢$, — ¢,) must be greater than 58. Since X is 107!, ¢, must be smaller
than H in order to have sufficient e-folds. However de Sitter space fluctuations
introduce uncertainties in ¢ of this order. The quantum fluctuations may prema-
turely terminate inflation. At the very least they suggest that the semiclassical
equations of motion may be invalid.

A more serious problem is the magnitude of the density Suctuations.35:3837.38]
During slow roll for the Coleman- Weinberg potential V*($) = A$?, and Eq. 169
gives

3 1/2
(), () v,
where Eq. 174 has been used to express ¢ in terms of the number of e-folds
before the end of inflation. Although (6p/p) depends upon N to a power, N
depends upon the logarithm of the length or mass scale, so the scale dependence
of (60/p) is only logarithmic. The problem with the Coleman-Weinberg potential
is not the spectrum, but the magnitude of the perturbations. Using A = 0.1 and
N(¢ — ¢.) = 58 + (1/3) In(M/10** My}, (6p/p) g on the scale of galaxies is 182,
and on the scale of clusters is 199. The spectrum is very flat, but about 10°® tco
large. Notice that a smaller A cures both problems.

Although the original mode] for new inflation was a failure, it pointed the way
for the construction of somewhat more successful models. The potential of the
original Coleman-Weinberg model was not flat encugh, i.e., A was too large. If
¢ couples to gauge fields, A will be of order a7, which is too large. If ¢ is a
weakly-coupled gauge singlet, the effective A can be amall, and will remain small
after radiative corrections. If A < 10-13, the depsity perturbations from Eq. 175
will be amall enough. However a weakly-coupled inflaton will have a small decay
width, and the reheat temperature will be low. If A is also the magnitude for the
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coupling of the inflaton to other fields, the decay width at the minimum will be
T'y = A*my = A%0, and the reheat temperature will be Try = (Temp)/? =~ 10°GeV
for A = 10~ and ¢ = 10'%GeV. A more careful calculation may give one or two
orders of magnitude larger value of Tgy, but it is clear that a weakly-coupled field
will have a low reheat temperature. This presents a problem for baryogenesis. Any
baryon asymmetry present before inflation will be diluted due to the creation of the
large amount of entropy, so it is necessary to create the baryon asymmetry either
during or after the reheating epoch. Many inflation models are squeezed between
the requirement of & weakly coupled inflaton for a flat potential and an inflaton
that has a large enough decay width to give Tau large enough for baryogenesis.

Supersymmetric models have been proposed as a mechanism to stabilize small
couplings in the inflaton potential against radiative corrections. Supersymmetric
models introduce several additional potential problems. The high-temperature
minimum of the potential is generally not at ¢ = 0, and (¢} may smoothly evolve
to the zero-temperature minimum. There are two possible solutions. If the high-
temperature minimum is at ¢ < 0, there will always be a barrier between the high-
temperature and the low-temperature minimum. The other solution is to ignore
the problem. Since the inflaton must be weakly coupled, it may never be in LTE,
and the initial value of ¢ may be random. Another problem with supersymmetric
models is the gravitino problem. Gravitinos are weakly-interacting, long-lived
particles present in supersymmetric models. They will be produced in reheating
in embarrassingly large numbers unless the reheat temperature is less than about
10°GeV. Finally, in supersymmetric models where supersymmetry breaking is done
with a Polonyi field, the Polonyi field can be set into oscillations that will not decay
because the Polonyi field is “hidden.” Since the energy density in the oscillating
field behaves like non-relativistic matter, it will eventually come to dominate the

Universe.

For successful new inflation, several requirements must be fulfilled. The re-
quirements occur during different periods of inflation. !

e Start Inflation: The scalar field must be emooth in a region such that the
energy density and pressure associated with spatial gradients in ¢ are smaller than
the potential energy. If the average value of ¢ is ¢y and the region has typical
_spatial dimension L, this requirement implies
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(V#)? = O(¢o/L) < V(do) = O(c*). (176)

If this requirement is not met and the (V¢)? term dominates, B(t) will expand
as t to a power and inflation will not occur. However once V{¢) does dominate,
the gradient terms rapidly become small in the exponential expansion and can be
ignored.

In supersymmetric models where LTE is obtained, the high-temperature min-
imum of V(¢) should be at ¢ < © to prevent 4 from smoothly evolving to the
zero-temperature minimum without inflating.

o Start Slow Roll: If ¢ is not a gauge singlet it may roll in the *wrong” direction.
For instance for the Coleman-Weinberg SUs model, the steepest direction for ¢
near the origin is toward a minimum where SU, x U is the unbroken symmetry.
If ¢ is a gauge singlet there is no problem with ending up in the wrong phase.

In order to have slow roll, the potential must have a flat region in which
[V"(¢)| < 9H? and |V'(¢)mp:/V (4)} < (48r)V/2.

¢ Roll Far Enough: The interval of slow roll, [#,,¢,|, must be large enough
that quantum fluctuations do not terminate slow roll. This condition will be met
ifg,— ¢, > H.

The number of e-folds, N = [ Hdt from ¢, to ¢,, must be greater than 58 +
In{o/10"*GeV).

+ Small Perturbations: The magnitude of the perturbations must be less than of
order 1074 on the scale of galaxies to clusters in order to avoid large fluctuations
in the MBR. If the fluctuations produced in inflation are to lead to structure
formation, they should be greater than of order 10-%, Therefore during slow roll
H[$ <1074

In addition to the scalar perturbations discussed so far, inflation will produce
tensor perturbations, These tensor perturbations can be thought of as gravity
waves. As each scale leaves the horizon during inflation the energy density of
gravity wavea on that scale is pgw ~ H*. In terms of a dimensionless amplitude
h = H{mp; and wavelength A, pew =~ (m%,A?/A%),_g-1. These gravity waves will
re-enter the horizon during the FRW phase with the same dimensionless amplitude
h, and induce an anisotropy in the MBR of order A, For :ST/T <1074 h =
H{mp; < 1074, Since H = 0% /mp;, ¢ must be less than about 10''GeV.
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» Ezit Properly: The reheat temperature must be high enough se the Universe is
radiation dominated during primordial nucleosynthesis. Using Ty = (['yme)'/?,
Tru > 1 MeV requires T'y > 10-2*GeV. If baryogenesis proceeds in the standard
way, then Tru > 10°GeV, which implies T’y > 10"GeV._ In order to ameliorate the
problem of low reheat temperature and baryogenesis, it has been proposed that a
baryon asymmetry is created by the decay of the inflaton. The energy density in
the coherent oscillations can be thought of as due to a collection of zero momentum
inflatons with number density ny = py/my. In reheating, p4 — g.Tig, 80 ny =
9.T4y/m4 at reheating. Suppose the inflaton decays into a particle, S, which,
in turn, decays out of equilibrium with baryon number violation. The number
density of 8’s that decay is the same as the number density of parent inflatons.
If the CP parameter in the decay of the S is ¢, then the asymmetry in baryons
produced by the S is np = eny = g, Tty /my. The entropy density produced after
thermalization of the infiaton decay products is s = g, T3y. Therefore B = ngfa =
¢Tan/m4. If B > 1071, then Tpy > 107" m, /e

There is a model-dependent upper limit on Try to avoid making unwanted
relics. For example, in supersymmetric models, Tey < 10°GeV to avoid overpro-
ducing gravitinos,

The above problems and some possible solutions are given in Table 3. Although
there are models that satisfy all the above requirements, none of them seem so
compelling that they must be the final answer. In fact, in the past few years there
has been increasing effort in the generalization of inflation as a phenomena that
is decoupled from a cosmological phase transition.

5.5 Present Status and Future Directions

Although the general scenario of inflation presents a very atiractive means to
ameliorate at least some of the untidiness of the standard meodel, it is by no means
clear that all {or even any) problems are solved or understood. It is now clear
that there are models, both supersymmetric and non-supersymmetric, which can
successfully implement the program of new inflation as cutlined above. It is useful

_to normalize the more non-standard models of inflation by comparing them to

these two “standard” models of inflation.



EPOCH PROBLEM POSSIBLE SOLUTION

Start ¢ Smooth {(Vé) «V{g)

Inflation Therma] Constraint ($) <0

Execute Roll in Right Direction | ¢ is gauge singlet

Slow Roll Flat Region in V(¢) | [V*(¢)| < 9H?, and

{V'($)mpi/V (¢)] < (487)1/2

Roll Far Quantum Fluctuations | ¢, — ¢, > H

Enough Sufficient e-folds N=[Hdt>58

Small Scalar Perturbations | (H3/¢) < 10~4

Perturbations | Tensor Perturbations | H/mp; < 1074

Exit Properly | Nucleosynthesia Tan > 1 MeV
Baryogenesis Ten > 107%'my,
Gravitinos Tan < 10°GeV

Table 2: Possible problems and solutions in new inflation

The non-supersymmetric model is a GUT model based upon SUs. The model
was first proposed by Shafi and Vilenkin,*® and refined by Pi.#!l In the latest
version of the model the inflaton is the real part of & complex gauge-singlet field
with a Coleman-Weinberg potential of the form in Eq. 170, with ¢ representing
the magnitude of the complex field, and B = O(10~14). It must be assumed that
the couplings of the ¢ to all other ficlds in the theory are less than about 10-7 to
prevent quantum corrections from spoiling the smallness of B. The real part of
¢ will be the inflaton, and the imaginary part of ¢ will be the axion. ¢ couples
to the adjoint Higgs, and induces SUy breaking when it receives a VEV. This
requires o = 10'*GeV. Since B is 80 amall (and will remain small after radiative
corrections), the problems with the original Coleman- Weinberg SUs model vanish.
The reheat temperature is barely high enough to produce a baryon asymmetry
through the decay of the inflaton as discussed above, At the expense of introducing
a small number, the model is simple and it works.

An example of a supersymmetric model that works was proposed by Holman,
Ramond, and Roas.®”l The superpotential in their model has a “inflation sector”
with superpotential I = (A?/M)(¢ — M)?, where M = mp;/(8x)!/3. The scalar
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potential in supersymmetric models is typically an expansion in ¢/M, given in
this case by

V($) = AY1 - 44°/M° + 6.5¢/M* — 84°/M® + ... ). (177)

For A/M =~ 1074, (A ~ 2 x 10"GeV), density fluctuations are small enough and
sufficient e-folds obtain. The decay width of the ¢ (which has only gravitational
coupling to other fields) is 'y =~ A%/M?®, which for A small enough to satisfy the
perturbations constraint, leads to Thy ~ (I'imp,]” 2 10%GeV. With the baryon
asymmetry produced via inflaton decay, this is large enough. At the expense of
the introduction of a sector whose sole purpose is inflation, the model is simple

and it works.

Both the above models have two potential problems. The first problem is
that to this point the calculations of the evolution of the scalar field have been
semi-classical. It may be that a true quantum calculation of the evolution of ¢,
including production of density perturbations, will give a result much different
than the semi-classical result. Preliminary work on this problem suggests that
the semi-classical approximations are reasonable. The second potential preblem
has to do with the initial value of ¢. Both fields are extremely weakly coupled
and are unlikely ever to be in LTE. There is no reason to assume ¢ =~ 0 for an
initial condition (in fact, it may not even be the high-temperature minimum for
the supersymmetric example). It is tempting to say that this is not a problem,
and that it is only necessary for ¢ =~ 0 in some region of the Universe where the
kinetic contributions to p are small enough to start inflation.

The above two models are existence proofs that it is possible to implement new
inflation. Whether new inflation is the final answer will be discussed briefly after
mentioning some other approaches for inflation that do not involve SSB.

For weakly coupled rcalar fields there is no reason to believe the inflaton will
be in LTE at high temperature, and the value of ¢ at high temperature might be
random (hence the name “chaotic inflation”}. Imagine a simple scalar potential
of the form V(¢) = A¢*, with minimum at (¢) = 0. Assume as initial conditions
that ¢ = ¢y # 0, and that ¢ is sufficiently smooth in a large enough region to
inflate. The number of e-folds of inflation is

N{$— 0) = j:Hd: ~n (i)z. (178)

mpy
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In order to obtain 58 e-folds of inflation, ¢y > 4.3mp;. The density perturbations
are

Again, using N = 50, A must be smaller than about 107!* for sufficiently small
density perturbations. Since Linde originally proposed this model*?] several refine-
ments have been made. First, it has been shown that it is possible to use a mig?
potential rather than a A¢! potential. Some work has been done in examining
and formalizing what exactly is meant by “chaotic” initial conditions, and which
regions of phase apace will inflate. Linde’s model is an example of how general in-
flation is, and that it is possible, perhaps even desirable, to separate inflation from
S5B phase transitions. Chaotic inflation (at least for the A¢* case) has the possible
problem of using classical gravity in the regime ¢ > mp;. At present it also has
the undesirable feature of involving the dynamics of a scalar field introduced for
the sole purpose of inflation.

A mode] even further from the original idea of an SSB phase transition is a pure
gravity model based upon including an ¢R? term in the gravity Lagrangian. Such
higher-derivative terms are expected to be present in theories with extra dimen-
sions. Mijié, Morris, and Suen*! have examined this possibility in detail, including
questions of density perturbations and reheating and find that all constraints can
be met for 10! < ¢~1/2 < 1012GeV.

Yet further from the original idea of inflation is the possibility that the inflaton
is related to the size of extra dimensions. This will be discussed in the next section.
A possibility not discussed here is the role of quantum gravity and the program of
the “wave function of the Universe.”

In a Universe without inflation, the space of initial conditions that give the
Universe we observe is a set of measure zero. The inflationary Universe enlarges
the space of initial data that will lead to the observable Universe. However, it
does not imply that every imaginable set of initial data will lead to inflation.
A trivial example is a closed Universe that becomes curvature dominated, and
collapses before the vacuum energy dominates and causes inflation. The question
“is inflation inevitable” has not yet been completely answered. Inflation may be
the final answer, part of the final answer, or none of the final answer.
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If inflation did occur there are two general predictions. The first prediction
is that 11 i very close to 1. It would be hard to imagine that ezactly 58 e-folds
of inflation occurred. With all models that give small density perturbations, the
number of e-folds of inflation is enormous, and the intrinsic curvature will only
appear on scales far larger than our present horizon. Of course, scale-free density
perturbations would appear on the horizon today, so a (§p/p) =~ 107* would lead
to {1 = 1+ 10~*%. The second prediction is that of scale-free density perturbations.
At present there is no convincing data to support either prediction. Dynamical
measurements of {} seem to give {1 = 0.1 — 0.3, This has {at least) three possible
explanations. Either there are systematic uncertainties in all the measurements,
there is unclustered matter (like massless particles) that give the unseen part
of {1, or there is a present vacuum energy that can account for spatial flatness
(the actual prediction of inflation) and 1 # 1. None of these explanations are
compelling. If the recent determination of the velocity field on large-scales are
correct, it is evidence againat a scale-free spectrum. Poasible ways out are the
measurements are wrong, cosmic atrings, and double inflation.

The last point is that saome explanation must be found for the present smallness
of the coemological constant.
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5. COSMOLOGY AND EXTRA DIMENSIONS

In the past few years the search for a consistent quantum theory of gravity
and the quest for a unification of gravity with other forces have led to a great
deal of interest in theories with extra spatial dimensions (extra time dimensions
seem to lead to ghosta). These extra spatial dimensions are unseen because they
are compact and small, presumably with typical dimensions of the Planck length,
Ip; = 1.616 x 10 cm. If the “internal” dimensions are static and small compared
to the large “external” dimensionsa the only role they would play in the dynamics
of the expansion of the Universe is in determining the structure of the physical
laws. However, if the big bang is extrapolated back to the Planck time, then the
characteristic size of both internal and external dimensions were the same, and
the internal dimensions may have had a more direct role in the dynamics of the
evolution of the Universe. This chapter presents some speculations about the role

of extra dimensions in cosmology.

5.1 Microphysics in Extra Dimenasions

Theories that have been formulated in extra dimensions include Kaluza-Klein
theories,*! supergravity theories, %% and superstring theories.*”l The exact motiva-
tion and goals of these approaches are quite different, but for many applications to
cosmology they have several common features and they will be referred to simply
a8 theories in extra dimensions. Among the common features of theories in extra

dimensions are:

o There are large spatial dimensions and small spatial dimensions: If some of
the dimensions are compact and smaller than the three large dimensions, it is pos-
sible to dimensionally reduce the system (integrate over the extra dimensions) and
obtain an “effective” 3+1-dimensional theory. Present accelerators have probed
matter at distances as small as 107 %cm without finding evidence of extra dimen-
sions. This is not surprising, as the extra dimensions are expected to have a size
characteristic of the Planck length. The large dimensions may also be compact.
If so, their characteristic size is greater than the Hubble distance, 10*®e¢m. This



812

disparity of about 61 orders of magnitude is somewhat striking. This disparity is
usually posed by the question “what makes the extra dimensions so small?” How-
ever, if gravity has anything to do with the size of dimensions, the only reasonable
size is the Planck length, and a more appropriate queation to ask is “what makes
the observed dimensions so large?” One possible answer to the the last question
is infiation. The possible connection between inflation and extra dimensions will
be explored.

e The effective low-energy theory depends upon the snternal space: In Kalugza-
Klein theories the low-energy gauge group is determined by the continuous isome-
tries of the internal manifold. In superstring theories, the structure of the internal
space determines the number of generations of chiral fermions, whether there is
low-energy supersymmetry, etc. If the internal space is distorted in any way the
effective low-energy physice could be very different.

o The fundamentel constants we observe are not truly fundamentol: In theo-
ties with extra dimensions the truly fundamental constants are constants in the
higher dimensional theory. The constants that appear in the dimensionally re-
duced theory are the result of integration over the extra dimensions. If the volume
of the extra dimensions would change, the value of the constants we observe in
the dimensionally-reduced theory would change. Exactly how they would change
depends upon the theory. In Kaluza-Klein theories, gauge symmetries arise from
continuous isometries in the internal manifold, while in superstring theories the
gauge symmetries are part of the fundamental theory. In all theories the gravita-
tional constant is inversely proportional to the volume of the internal manifold. In
the most general case there is not a single radius in the internal manifold. How-
ever, for the sake of simplicity it will be assumed that there is a single radius, b,
which characterizes the internal manifold. The b dependence of some fundamental
constants are given in Table 4. In Table 4, af is the present value of the fine
structure constant, G° is the present value of the gravitational constant, G} is the
present value of Fermi's constant, and by is the present value of b,

¢ The internal dimensions are static: If the internal dimensions change, fun-
damental constants change. Limits on the time variability of the fundamental
constants can be converted to limits on the time variability of the extra dimen-
sions. Limits on time rate of change of the fine structure constant {assuming

that the change is a power law in cosmological time) are given in Table 5. The
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THEORY afa® | G/G® | Gr/G}
Kaluza-Klein (b/bo)~% | (b/bo)~P | (8/b0)"*
(D internal dimensions)
Superstrings (6/50)7% | (b/50)~® | (b/Bo)~®
(6 internal dimensions)

Table 3: Variation of fundamental constants with the size of the internal manifold

|&/al METHOD Ar

§ x 10715yt 137Re /14708 5 x 10%7

1% 10 7yp-1 Oklo reactor 1.8 x 10%r

13 X 1074 yr~! | Radio galaxies | 2 x 10% 2 yr

2 x 1074 yrt | QSO 5x 10%! yr

15 x 107 1%; yr~! | Primordial 8.6 x 10*A~! yr
nucleosynthesis

Table 4: Constraints on the time variation of the fine structure constant
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look-back time, Ar, is the maximum time over which the limit may be applied.
For the look-back time, an {1 = 1 cosmology was assumed, i.e., & present age of
(2/3)H; = 6.8 x 10°h~'yr. Long look-back times are relevant if the change is
not a power law in cosmological time. It is interesting to know how soon after the
bang the internal space had essentially the size it has today. The limit with the
longest lock-back time is the limit from primordial nucleosynthesis.

Primordial nucleosynthesis is a sensitive probe of changes in o, since the
neutron-proton mass difference @ = m, — m, = 1.293 MeV has an electromag-
netic component. Although the details of the neutron-proton masas difference are
not known, it is reasonable to assume that the electromagnetic contribution is the
same size (but the opposite sign) as the entire difference. With this assumption
afa® = Q/Q°, where Q° is the value today.

The neutron-proton ratio at freeze out given by Eq. 1.78 iz exp(—@/Ty), eo
n/p is very sensitive to small changes in Q. The primordial *He mass fraction as
a function of b/by is given in Fig. 16, assuming that a, G, and G depend on
b/bg as in Table 4. The curve labeled “SS” is the superstring model (D = 6}, and
the curves marked “KK;” and *KK;" are Kaluza-Klein models with D = 2 and
D = 7 internal dimensiona. The allowed range of the primordial *He, ¥ = X, =
0.24 + 0.01. For the superstring model, the primordial helium is within acceptable
limits only if at the time of primordial nucleosynthesis 1.005 > b/bo > 0.995. The
Kaluza-Klein models give the slightly less stringent result 1.01 > b/by 2-0.99. In
either case, by the time of primordial nucleosynthesis the internal dimensions had

obtained a size very close to the size they have today.*

e The ground state geometry does not have all the symmetries of the theory: It
is generally assumed that the ground state geometry is of the form M* x BP,
where M* is four-dimensional Minkowski space, * and B? is some compact
D—dimensional space. The symmetries of the ground state are generally not as
large as the symmetries of the theory, i.e., there is spontaneous symmetry break-
ing. One of the results of S5B iz the existence of a massless (at least at the claasical
level) Nambu-Goldstone boson, which is sometimes called the dilaton.

e The specirum contains an infinite number of massive states: If the radius of
the internal space is b, then b~! geta the scale for the massive states. The spectrum

18The assumption of M* is not quite correct in a cosmological context, and should be replaced by
R! x 5 for the closed model, B! x Q* for the open model.
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Figure 16: The primordial mass fraction as a function of b/

of the massive states depend= upon the type of theory and the structure of the
internal manifold. Since b is expected to be close to Ip;, the massive states should
have masses close to mp;.

5.2 Stability of the Internal Space

All theories formulated in extra dimensions must contain some mechanism to
keep the internal dimensions atatic. In the absence of such a mechanism, the extra
dimensions would either contract or expand. The origin of the vacuum stress
responsible for this is unknown. Here, some toy models are given, along with some
possible cosmological effects.

In theories with extra dimensions new types of interactions may arise. For a
starting point, consider the Chapline-Manton action, ) which is an ¥ = 1 su-
pergravity and an N = 1 super-Yang-Mills theory in 10 space-time dimensions.
This theory is thought to be the field theory limit of a 10-dimensional superstring
theory. It is not at all clear that the 10-dimensional fleld theory limit of the super-
string ever makes sense. The 10-dimensional field theory description obtains cnly
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in the region between two similar energy scales. The first scele is determined by
the string tension. It is the acale above which it ia necessary to include the massive
excitations of the string. Above this scale physics is “stringy” and any point-like
field theory description is inadequate. The second scale is the compactification
scale, which is determined by the radius of the internal space. At distances smaller
than the compactification scale dimensional reduction no longer makes sense, the
3+1-dimensional deacription ig inadequate, and the 10-dimensional theory must be
used. The 10-dimensional field theory description makes sense at distance scales
larger than the string tension scale, but smaller than the compactification scale,
Since these two scales are expected to be the same order of magnitude, it is not
clear if the 10-dimensional field theory description ever obtains. Nevertheless, it
offers a convenient starting point for an exploration of cosmology in extra dimen-
sions.

The Chapline-Manton Lagrangian contains the N = 1 supergravity multiplet
{efe; ¥ars Bmns A; o}, where ef, is the vielbein, s is the Rarita-Schwinger
fleld, Basw is the Kalb-Ramond field, ) is the sub-gravitino, and & is the dilaton,
and the super Yang-Mills multiplet {Garv; x}, where Gy is the Yang-Mills field
strength and x is the gluino fleld. The Lagrangian is 17

- 1 1- 3
e 1 L = —ER - EﬂJMrMPstﬂJs - Iexp[—a)HMNpHMNP

—;6;;06“0 - ?;&M 2oTM) — %x 3
V2

+3g *P(=0/2) Hanp ($qTMN Fypp + 6GMIN 4P
1

~VERTMNPTR) - S Tex Px -

exp(—o/2)TrGrn GMY

3
_Z (Tl'fI‘,\.ﬂ\l'px)2 + exp(—ojz)HMNpTrXI‘“pr + - (180)
where MNP — DIMPNTPl and Hynp = Oy Byp). Four fermion couplings and
other terms have been omitted.

The “Einstein equations” are straightforward to obtain:

9 1
Ryn = Eexp(—o) (HMPQHNPQ - ﬁQuNHpanPQR)

17The following notation will be used: D =number of extra dimenlion;; M, N P @ ...run
from Q to D+3; u, », p, ... are indices in the extra dimensions; and m, n, p, g, ... are indices
in the large spatial dimensiona.’
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1
—exp(—o/2) (TIGMPG; - EQMN’TTGPQGP Q)

1 1
~3000M0 — = (TexTrgrx) (ALO%2) gren
3 9
T (TrXTrorx)’ gren -+ 3 exp(—0/2) Hy “ TexCTnrgx

3
16 exp{—0/2)gmn HpqrTexF 9y + -« {181)

The task at hand is to solve Eq. 181 to find the equations of evolution of the scale
factor(s) in the expansion of the Universe toward the quasi-static ground state
of the system where there are D static dimensions and 3 dynamic dimensions
expanding as in a standard FRW cosmology.

In general it is necessary to choose background field configurations. For ex-
ample consider the “bosonic™ parts of the equations. What are the symmetries
of the metric? What are the vacuum (background) values of Hywp, of Guy, of
I'x, of Al'), of 6?7 In general, many (possibly_ infinitely many) solutions of the
field equations are expected, even if there is but one ground state that describes
the microphysics of our Universe. The immediate question to ask is what picks
out the ground state and what is the evolution of the Universe to this ground
state? Perhaps when the true string nature of the equations are taken into con-
sideration there will be but one possible solution to the string equations even if
there are many solutions to the field theory. Perhaps something in the evolution
of the Universe prefers a unique or small number of possibilities. Such questions
are reminiscent of the questions considered in inflation. If the conditions in some
region of the Universe are such as to enter an inflationary phase, that region of
the Universe will grow relative to a region that does not undergo inflation. It is
possible to imagine that the Universe starts in a astate with no particular back-
ground field configuration, but in a quantum state described by a wave function
¥ that describes the probability of a given configuration, ¥(field configurations).
If in some region of the Universe the wave function is peaked about a particular
configuration that will inflate some spatial dimensions, that region will grow. All
that is required to produce the Universe we observe is that there is some region
that will lead to three spatial dimensions inflating (and some mechanism to keep
D dimensions static). It may be that the theory is unique, but the ground atate

is not. It may be that somewhere outside of our horizon the Universe is quite
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different. There may be a different number of small versus large dimensions, or
the internal space may have different topological properties leading to drastically
different microphysics. Before this speculation is considered, it is necessary to un-
derstand the mechanism that leads to the stabilization of the internal space. This
problem will be studied by considering individual contributions to the right-hand
side of Eq. 181.

For simplicity, the metric will be taken to have the symmetry R! x §3 x 8P

1
gMN = —a*(t)dmn (182)
—b? (t)ﬁw
where g, is the metric for §* of unit radius and a(t) is the actual radius, and §,,

is the metric for 2 of unit radius and b(t) is the actual radius. The components
of the Ricci tensor are

a b

Ry = + z— +pib +

" abd G

b 1

~R,, = [ +(D- 1) + 3E§ + ——~—Dp ] P (183)

With the Einstein equations in the form
Rpsny = 813 [TMN - ;gMNTP 1 4 QMN] (184)
D+2 P D¥28rG

where G is the gravitational constant in D + 4 dimensions, !® and A is a possible
cosmological constant in D + 4 dimensions. All the terms on the right-hand side
of Eq. 181 contribute to Thex and A.

Symmetries of the stress tensor are usually chosen such that the only non-
vanishing components of the stress tensor are

Tm = p
Tn = “Pafmn
Tw = —rogw (185)

+ 184 is related to Newton’s constant G by & = GVY, where V2 is the volume of the internal space
today. .
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with T%; = p — 3py — Dpp. In terms of p, ps, pp, and p, = A/8xG the Einstein
equations are

b 8xl

a
3—+D; = D+2{(D+l)p+3pa+Dpp p;]
a a? ab 2 8xC
;+2—+Dab+— = D+2[ﬂ+(D—1)pa—Dpp+m}
b B &b D-1 8r G
5+(D— )b=+3 b+ e = D+2[p 3p3 + 2pp + pa)- {1886)

Some possible contributions to the right hand side will be considered in turn.

e ltysy =NOTHING: The simplest possible form for the right hand side is zero.
For the moment abandon the choice of B! x §% x §P, and consider a D + 3 torus
for the ground state geometry. The spatial coordinates can be chosen to take the
values 0 < 2* < L, where L is a parameter with dimension of length. The general
cosmological solutions of the vacuum Einstein equations are the Kasner solutions.
The Kasner metric is

D+3 t I

ds* =d* — Y (—) (d=)?. (187)
i=1 ‘0

The Kasner metric is a solution to the vacuum Einstein equations provided the

Kasner conditions are satisfied

D43 D+3

Sa=Ysl=1 (188)

=l

In order to satisfy the Kasner conditions at least one of the p; must be negative.
It is possible to have 3 spatial dimensions expanding in an isotropic manner and
D dimensions contracting in an isotropic manner by the choice®
_ 3+ (3D +6D)'/?
- 3(D+3)
_ _ . _D-(3D*+eD)

P =M = 4= D(D+3)

Note that p > 0 and ¢ < 0. With this choice the metric may be written

nh=p=ps

(189)

ds® = dt* — a*(t)dz? — P*(t)di’, (190)



520

where z* are coordinates of the 3 expanding dimensions, and yf are coordinates of
the D contracting dimensions. The two scale factors are given by a(t) = (t/t)?,
b(t) = (t/to)".

Somewhat more complicated classical cosmologies have been considered. The
Kasner model can be regarded as an anisotropic generalization of the flat FRW
cosmology, i.e., a Bianchi I cosmology. A generalization of the closed FRW model
is the Bianchi X model. The Bianchi [X vacuum solutions have the feature that
the general approach to the singularity is “chaotic.”®!l On approach to the initial
singularity the scale factors in different spatial directions undergo a series of oscilla-
tiona, contractions, and expansions. This feature is quite general, and independent
of the state of the Universe after the singularity. The oscillation of the scale fac-
tors is well described by a sequence of Kasner models in which expanding and
contracting dimensions are interchanged in “bounces.” Such anisotropic behavior
is predicted to be the general approach to the initial singularity. The question
of whether such a chaotic approach to the initial singularity is present in more
than three spatial dimensions has been considered. It has been shown that chaotic
behavior obtains only for models with between 3 and 9 spatial dimensions.’? The
importance of this observation is ¢louded by the fact that at the approach to
the singularity curvature may not dominate the right hand side of the Einstein
equations, and near the singularity classical gravity may be a poor description.

The solutions above do not have solutions with a static internal space and if
they are ever relevant, it is only for a limited time. The right-hand side must be
more complicated than nothing. The next simplest thing to consider on the right-
hand side ie free scalar fields. Before discussing their effect on the evolution of the
Universe it is necessary to discuss regularization in the background geometry.

The free energy of a non-interacting spinless boson of mass p is given by*¥
1 2
F =T InDet (—Duen +4"). (191)

since finite temperature effects are of interest, the time is periodic with period of
1/2xT, the relevant geometry is §' x §3 x §2, and the radii of the spheres are
1/2xT, a, and b. The eigenvalues of 0 on the compact space are discrete, and are
given by the triple sum (hereafter i will be set to zero)
- -] ob
2X'F =3 Y Dualn[?(27T)° + mim+2)a

r=—an mn=0
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+ n(n+D-1p7%, (192)

where D,,, is a factor that counts the degeneracy
Dpn=(m+1)*(2n+ D -1)(n+D-2)}/(D - 1)l (193}

The free energy given by Eq. 192 is, of course, inflnite. To deal with the
infinities, a regularization scheme will be found to extract the relevant finite part.
For the purpose of regularization, each term in the sum can be expressed as an
integral using the formula®3l 12

InX = %x' lh=o= % (ﬁ fo T dt t"lexp(—tX))"o. (194)

The finite part of the free energy is given by

2T 'F = f dtt* 1o, (4#'T’t]og(a‘:t)ap(b'zt)] (195)

; [I‘(—S)

where the functions o; are given by

(2n+i~1){n+i—1)!
g (i —1)!n!

The full expression for the free energy is quite difficult to evaluate, but the

oi(z) = exp[—n(n + i — 1)z]. (198)

free energy is simple in several limits. In the “Hat-space” limit the radius of S° is
much larger than the radius of ST (a 33 b) and 03 — (\/7/4)a*~3/2, In the limit
@ > b the free energy can be approximated by

ﬂ;a‘
o

F =

[e1 — ea(dT)* — es(bT)P*] (197)

where [1; is found from the volume of the i-sphere, V; = R'(}; with R the radius
and f); = (2x)0+/2/1((i + 1)/2]. For S, the volume is V3 = R32x?, and {I; has
the familiar form {13 = 2x%. The term proportional to ¢, is the Casimir term (e,
is ¢y of Candelas and Weinberg®l). The term proportional to ¢; = #2/90 is the
leading temperature-dependent term when T < b~). When T » 5%, the term
proportional to ¢z = (2¢(D +4)/#**)T[{D + 4)/2]/T|(D +1}/2] dominates. In the

19This regularization iz only valid for D —odd. The D —even case will be discuased below.



Casimir Low Temperature | High Temperature | Monopole
T=0 0<T<d?! T>»b? T=0 »

p | eafOphttD (x2/30)T4/Qpb*+P | (D + 3)esTP+/01p | 752020

ps | —er/QpbP | (x2/90)T4/NpbtD | TP+ /1, T

pp | 4a/DOpb*tD (0 esTP+H /0p f3 /2690

™ 1o 0 Q (4 — D)f3 /2P

Table 5: Contributions to thermodynamic quantities

“low-temperature” limit the radius of the S becomes large and oy — (4x£7?)1/2,
In the flat-apace, zero-temperature limit only the term proportional to ¢; survives,

The internal energy is given in terms of the free energy, the temperature, and
the entropy

aF
§=— [3__’{; . , | (198)

by U = F+T§S. The thermodynamic quantities p, ps, and pp are defined in terms
of the internal energy:

_ v
? = QipatdP

s = Sngnpasbp[ ].’s

bo = Dn,n,,asw[ ] (199)

The thermodynaimnic quantities in zero temperature, low temperature, and high
temperature limits are given in Table 8. There are several obvious limits of Table 6.
In the zero-tempert;ture or in the low-temperature limits, dimensional reduction
is possible. Upon integration over the internal dimensions the effective three-
dimensional energy density and pressure is obtained by multiplication by Vp =
Q1pbP. After dimensional reduction the Casimir terms are proportional to e d—t.
The low-temperature limit after dimensional reduction is p = 3py — (x?/30)T* and
po = 0, which is the expected contribution for a spinless boson in 3+1 dimensicns.
In the high-temperature limit dimensional reduction does not make sense,
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It is posaible to perform a similar analysis for particles of higher =pin. The
technical details are more difficult, but the physics is quite similar.
eRun =RADIATION:*! Consider the “high-temperature® (T' > b~1) “flat-
space” (a >» b) limit with A = 0. In this limit Ty is isotropic in the sense that
ps = pp = p (see Table 6). The Einstein equations are
a, b

3=+ D = -8xGp
a b
& &t ab
St2g+D; = 8xGp
3 i _ab D-1 -
sH(D -G +3_g g = 8xGp. (200)

In keeping with the flat space assumption the 2/a’ term has been dropped in
R The equation of state is p = Np, where N = D + 3. The conservation law
T“‘ﬁp = 0 implies

&N = constant, (201)

where & o (ahP)¥/¥ is the mean scale factor. Since p TN+l there is a conserved
quantity Sy = (@T)¥ that is constant. This is simply the total N-dimensional
entropy.

The Einstein equations (or a subset of the Einstein equations and the ™ =0
equation) can be integrated to give a{t) and 3(t). A typical solution is shown in
Fig. 17. Both scale factors emerge from a initial singularity. The scale factor for
the internal space reaches a maximum and recollapses to a second singularity. As
b approaches the second singularity a is driven to infinity. The parameter z [z, in
Fig. 17 is a measure of the time in units of the time necessary to reach the second
singularity.

The evolution of the temperature is shown in Fig. 18. The figure demon-
strates the rather striking feature that as the second singularity is approached,
the temperature increases. The expansion of a together with an increase of T
seems unusual. However it is simply due to the conservation of entropy. In the
region of growing T the mean volume of the Universe is actually decreasing, and
the temperature must increase to keep Sy constant,

The sssumption of the flat-space limit for % can be easily justified. Imagine
that the apatial geometry is $7 x §2. If a > b in the high-temperature region,
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Figure 18: Evolution of the temperature for the solution of Fig.17
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once the maximum of b is reached, the §* will be inflated. The only requirement
is that the curvature term, 1/a?, is small compared to the thermal term, 8xGp, at
b = bhyax.

In the approach to the second singularity the combination of expanding and
contracting dimensions behaves like a Kasner model. A recurring feature in the
analysis as presented in this review is that as the models become more baroque,
there are limits in which the expansion can be approximated by only a part of
the entire model. This is why consideration of the influence of individual terms
contributing to Tpey is relevant.

In the period of increasing a and T, the entropy in the three expanding dimen-
siona increases. Of course the foto! entropy is conserved, but in the approach to
the second singularity entropy is squeezed out of the contracting dimensions into
the expanding dimensions. The 3-entropy, $3 will be defined as 53 = {daaT)3,
where dgs is the horizon distance in the 3-space

dns = alt) [ fatt a1 (1), (202)

In the approach to the second singularity, dga — o0 and T — 0o, s0 83 — oo.

Before the second singularity is reached, two things must happen. First, there
must be some mechanism to stabilize the internal dimensions. The other thing
that must happen is that the high-temperature assumption will break down. The
decrense of b outpaces the increase in T' and eventually the assumption T > b~!
will fail. When this occurs it is necessary to use the “low-temperature” form of the
free energy and the only dynamical effect of the extra dimensions is the change
in G. The increase in Sy shuts off at this time. The conditions necessary to
generate a significant amount of entropy in the three expanding dimensions have
been studied. It is impossible to create an enormous amount of entropy without
either very special initial conditions or extrapolating the solutions beyond the
point where the high-temperature assumption breaks down.

o Ry =Casimir + A:% The combination of Casimir forces plus a cosmological
constant can lead to a classically stable ground state. With p, ps, and pp from

Table 6, the Einstein equations in Eq. 188 becomes
@ b 8xG [(D+2er,
%P8 T Dyl mp, 0 M




a & _ab 2 gx@@ (D+2er, o p
aT2atPta = "p+z[ (i ma
b B .ab  8xl 4(D+2)c1,‘_‘_ D-1

Note that the curvature of $7 has been neglected (1/a® — 0}, and that the cur-
vature term for 52 ({D — 1}/6?) has been moved to the right hand side of the v
equation where it belongs.

The search for static solutions involves setting the left-hand side of the equa-
tions to zero. Setting the left-hand side to zero involves setting the time derivatives
of both a and b equal to zero. The value of b for this static solution will be denoted
= bp. The first or the second equation determines by in terms of p,

0
—4-D _ D
"= Br et (204)
Remembering that & = GVp the 3 equation can then be used to determine b, in
terms of the Planck length

8re,(4 + D)

7 _ 2
by = DO —1) {or (205)
It is useful to rewrite the equations once again, this time in terms of b
i b 2| D (0\"? D
10 = —(b-1% 4+D(?) i+D
éb 2 : »\"*? b
+2 +Dab+ = ~(P-1k [4+D(b) T4+D

ab b\ 2 D
+{D- 1)_”‘“3 (D - 1)k? 4+D(b) ti+D

W -

Of course at b = by the right-hand sides of the equations vanish.

]

U"I -]

In general there may be other interesting solutions to the system of equations.
For instance in the limit where a and b both go to infinity, then the right-hand
" sides of all the equations approach a constant given by
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D(D-1)

2
B =—7D

——5 (207)
In this limit the solution to the aystem is a{t) = b(t) = exp(+H?/+/3). This
solution describes exponentially growing scale factors for both §% and SP.

The static minimum b = by is stable against small perturbations, since §5(t) =
() — bp has no exponentially growing modes. However the existence of the ex-
ponentially growing solution for ¢ and b implies that if b is ever large, it would
grow without limit. This suggests that the static minimum is not stable against
arbitrarily large dilatations. This point will be discussed in detail shortly.

In order to search for other solutions, and to study the semiclasaical inatability
in compactification, the radius of the extra dimension will be expressed as a scalar
fleld in a potential in four dimensions. The equation for b looks like the equation
of motion for a scalar field if the 5 term is neglected on the right hand side, and
the left hand side is regarded as 3V (b)/8b. The correct function of b to regard as
the scalar field is determined by the kinetic part of the action. The kinetic part
of the gravitational action is

1
8 = ~lonl d*Pzy/~genRa, (208)

where R; is the part of the Ricei scalar containing time derivatives of &:

Ri=-D [zg +{D-1) (g) +e-3] (209)

Upon integration by parts and integration over the internal space the kinetic part
of the action becomes

Sy = -D(D - l)min f d'z/=g¢ (;';) o (::—a)3 (210)
If a acalar field ¢ is defined as
$(b) = [ D1 11/ ( % )m mpy (211)

it will have a canonical kinetic term. With this definition of ¢ the b equation
becomes
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- &. & dv
¢+3E¢+ ? = _Ea (212)

where dV'/d$ is the right hand side of Eq. 206 with the substitution of ${b) for b.
The potential is found by integrating dV /d¢:

V) = (%)w_-qm{(%);_ (i)

324"~

where ¢g = ¢(bo) is the value of ¢ at the static minimum, ¢y = ((D—1}/2xD]Y2mp,.
There is an integration constant from integrating dV/d¢ to find V{(¢). The inte-
gration constant has been chosen to give ¥V (¢} = 0. A graph of V(¢) is given in
Fig. 19 for D=7 and ¢; = 1.

The figure illustrates several interesting features. The first feature is that
the static minimum is perturbatively stable, but for ¢ greater than some value
the potential is unstable, There is also a maximum to ¥ (¢} that corresponds to
dV/d¢ = 0 that corresponds to a solution with b atatic, but a expanding expo-

"nentially. A discussion of the semiclassical instability of the static solution will be



discussed shortly.

o Ry =Monopole+4:%® The previous model used quantum effects from the
Casimir effect to stabilize the extra dimensions againat the cosmological constant.
It is also possible to balance the effects of a classical field againat the cosmological
constant. Consider the Einstein-Maxwell theory in six space-time dimensiona. The
action for the model is given by

1 1
S:——_fd‘ — [ = Fypen FMN ] 214
T A R-i-‘1 MN +24 (214)

The effect of the Maxwell fleld in the Einstein equations will through its contribu-
tion to the stress tensor

1
TMN = FMQFg —_— IQMNFPQFPQ° (215)

The ground state geometry will be assumed to be R! x §% x $?, where as before
& » b. The monopole ansatz has vanishing components of Fyn except for indices
in the internal space:

Fu = V=026 f(t), (216)

where f(t) is a function of time and g; is the determinant of the 5% metric. This
ansatz, of course, satisfies the field equations for Fayy. The Bianchi identities can
be used to express f(i) in terms of the S* radius, f(t) = fo/b(t), where fo is a
constant.

With the monopole ansatz for Faen the non-vanishing components of the stress

tensor are

_114 Y _11
Tw = 2 pe! Toan = Eggﬂm; Tpv =3 Fg.lw' (217)

The contributions of the monopole configuration to p, ps, and p; are given in Table
8. The Einstein equations with the cosmological constant plus monopole are

3-+2- = -2xG f—g—m
o [

—2nG [{‘—g - p,\]

1

| 2xC [ £, p,\] -= (218)
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The static solution in terms of fj is

5

= U by = 8xG f}. (219)
0

To illustrate the potential it is again useful to express the Einstein equations in
terms of b,
- = 4
a 1 b
420 = —— 2} 1
ek - )]

ottt d - &[]
R RO

In addition to the static solution at & = by, there i a quasi-static solution at

>
o

b = /3by where b is static, but a increases exponentially ¢ = agexp(Ht), where
H = /2/3by. Finally, there is the solution as botk a and b — oo where both scale
factors increase exponentially with rate H = 1/2+/5by.

By the same methods as developed for the Casimir case, it is poesible to define
a scalar field and a potential for the scalar field. The potential is very similar
to Fig. 19. This model is also unstable against large dilatations of the internal
dimensions.

The monopole compactification was considered in D = 2 for simplicity. The
extention to larger D will be considered in the section on inflation.

sRByn = R® + A:*" The Casimir, monopole, and cosmological constant terms
can arise in the Chapline-Manton action. Although terms such as R?, Ry v RMY,
and RunpgRMYPQ do not appear in the Chapline-Manton action, they are ex-
pected to be present in superstring theories, and probably all other extra-dimension
thecries as well. Consider the gravitationa] action for a theory with such terms
given by

§=- lﬁwafdﬂp V=9up[R + 284 a R+ asRpynRMVN

+ asRuwpoRM NTQ] . (221)
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There is a M* x 5P solution if the following conditions are met:
0 < D(D - 1)61 + (D - l)dz + 2ay

0 < (D-1)as + 2ay

0 < ag
1 D(D-1)
A = PP Dau+D-Dat2a (222)
At the M* x S? minimum, the value of b is
b5 = 2D(D — 1)a, + 2(D — 1)a; + 4as. (223)

The potential in this case is more difficult to analyze since there are higher
derivative terms in the equations of motion. Nevertheless it has been shown that
there is a solution corresponding to b ~constant and a increasing exponentially.
Such a solution corresponds to a local maximumm in the potential as in the Casimir
or monopole cases. The difference in this case is that the location of this local
maximuin is a function of the a;'s, and for
_ 12/D-3
T2-24/D(D-1) "

as (224)
the local maximum will be at & = oc. This means that the M* x SP minimum
is a true global minimum and is stable against large dilatations of the internal
gpace. For the D = 6 case, the ghoat-free action obtains for the case ay = —az/4,
while Eq. 224 gives a3 = —5a;/8. The effect of the higher derivative terms in the
equations of motion for a(t) and b(t) have been studied in both cases.

The possibility of using this model for inflation will be discussed below.

5.3 Semiclassical Instability of Compactification

In the Casimir +A case, the monopole +A case, and the R? + A case where Eq.
224 is not satisfied, the static solution is not the true minimum of the theory. If
the radius of the extra dimensions can be treated as a scalar field, it is possible
to calculate the lifetime of the Universe againat the decay of the false vacuum 5l
The Casimir case will be used as an example.
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Eq. 213 looks like the potential for a scalar fleld ¢(z,t). The definition of ¢
in terms of & has been done to have the proper kinetic term for ¢. With the four-
dimensional gravitational degrees of freedom treated as a classical background, the
problem of calculating the lifetime of the metastable state is identical to the decay
of the false vacuum. For D = 7, V(¢) has a local minimum at ¢y = 0.3Tmp;, &
local maximum at ¢y, 2 0.725mp,;, and a point degenerate with the local minimum
at ¢T =~ 0.96mp; (see Fig. 19).

The potential can be approximated in the region 0 < ¢ < ¢r by (c1 has been
set to 1)

V($) = 0.003A¢° — 0.15948% /mpy, (225)

where ¢ = ¢+ ¢o has been shifted to place the metastable state at the origin. The
potential has the form V($) = M?@/2 — §¢°/3 for which the tunnel action has
been calculated. The tunnel action is §g =~ 206M?2/63 %] which in terms of A and
mp; is Sg = 165mb,/A.

The decay rate per unit four volume is
T = m},; exp{—Sz), (226)

where the pre-factor has been chosen as m}, on dimensional grounds. In a matter-
dominated Universe the probability for decay becomes of order unity in a time 7
given by 74 ~ 0nT /165 ~ m;} exp(41m},/A). This is longer than the age of the
Universe if A < 0.3m},.

In the Casimir case

D'D-1P(D+2) , 1
= —Drapme TP 5.22m¥pfen (D=T). (227)
In order to have the internal dimensions stay small for the age of the Universe
tequires ¢; > 17.4. For S7 a single scalar field contributes c; = 8.16 x 1074, so
to satisfy the demand of longevity requires that there be more than 21,326 scalar
fields. ? Since the effective e,'s for higher-spin fields are larger, somewhat fewer

are required.

AOIF there are N scalar flelds, the effective ¢y is N times the c; for a single field.
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Figure 20: The temperature dependence of the Casimir potential

There is also a finite-temperature instability present in the compactification.®!
If the temperature-dependent terms in the free energy are included, the potential
as a function of temperature has the form of Fig. 20. At high temperature the
potential has no metastable state. The scalar field would not be trapped in the
metastable phase if when b ~ b; the temperature ia large and temperature effects
are important. The temperature when 4 = b depends upon the initial entropy. In
a high-entropy initial condition the temperature will be large and compactification
will not occur. The requirement that b should be trapped in the metastable state
requires a low-entropy Universe, and the large entropy of the Universe must be
created after compactification.

5.4 Inflation and Extra Dimensions

The models of the previous section have illustrated the point that there are
several mechanisms to force the internal space to be static and small. Although
the mechanisms have different origins they all have in common the feature that
there is a balance of forces at a particular value of b = 8. If b # by there
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is an unbalanced stress in the vacuum. This unbalanced stress in the vacuum
looks like a cosmological constant that can drive exponential expansion of all the
dimensions, or just three dimensions. For instance in the monopole case discussed
above, at b = 4/3b there is a solution correspending to static internal dimensions
and exponentially expanding external dimensions. At b = +3hy the equation of
motion for a is found from the (00) equation: 3&/a¢ = 2/0b%, which has solution
o x exp(Ht), with H? = 2/2Th,

It is possible to imagine a scenario of new inflation where the exponential phase
occurs for b = /3by, and is terminated when b settles to the local minimum at
b = by. This is probably not a good example, because the potential is similar to
the potential in Fig. 19, which is not the type of potential needed in new inflation.
Even if for some unknown reason the Universe was ever in a configuration of
b = /3b and & static, quantum or thermal fluctuations would push & away from
the unstable extremum. Even if it would roll in the correct direction toward the
metastable miniraum, the transition would be completed before sufficient inflation

OCC1ArS,

A lesson learned from new inflation is that one should not be deterred by failure
of simple models. For instance the R?+ A model is an existence proof that & model
can be found. Recall that for a particular value of a3/a; the potential does not
turn over for large b and becomes flat. There can be a large amount of inflation
as b evolves toward the ground state.

Inflation with the inflaton identified as the radius of the extra dimensions has
some interesting features. In the evelution toward the ground state the radius of
the extra dimensions grows, leading to an increase in the four-dimensional grav-
itational constant. The reheating is probably due to the change in the internal
metric. For example, consider a minimally coupled scalar field x with action

5 f 4Pz x (V=909 3NX) - (228)

As b oacillates about the minimum of the potential there will be a non-zero value
of @ that results in an increase of x. Although the details of the reheating remain
to be worked out, the basic picture has been explored.t”¢!l

All the models discussed above involve a D + 4-dimensional coemological con-
“stant that must be fine tuned to obtain the four-dimensional cosmological constant
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zero at by. All models (except the R? + A model with Eq. 224 satisfied) do not
inflate and involve an unstable ground state. The introduction of* the cosmolog-
ical constant in the higher dimensional theory is not attractive. The fine tuning
certainly must be incorrect. The unstable ground state cannot be ruled out, but
seems undesirable. It would be nice if the existence of extra dimensions would
lead to inflation.

Surely any realistic model should work without fine tuning of A. One might
expect a realistic model to work for any effective value of A, and any change in A
would simply lead to a change in by. In other words, if the vacuum energy would
change, the only physical result would be a slight readjustment of by. This would
be very attractive, since any cosmological constant produced as a result of SSB
could be completely absorbed by a small change in 3, and it would be unnecessary
to fine tune A at high energies to account for phase transitions at low energies.
Without extra dimensions there is nothing to do with the vacuum energy produced
in phase transitions. Extra dimensions may provide a rug under which to sweep
unwanted vacuum energy. After all, some vacuum energy is needed to keep the
extra dimensions static,

The prospect of inflation from extra dimensions has not been realized in a
realistic model, but there are no realistic models for compactification. In the
Chapline-Manton theory there are two massless scalar fields, the dilaton and the
radius of the internal dimensions. Perhaps one, or both, of these fields are the
dilaton. Both fields have the promising feature that at the classical level they
have flat potentials. The posaibility of a unique field configuration that will lead
to inflation is interesting.

The instability for large b in the Casimir and monopole models can be removed
by considering combinations of the models.

#Ryx =ALL OF THE ABOVE:* Before combining the contributions it is use-
ful to extend the analysis to products of spheres. Assume a ground state geometry
of the form Rx §*x 7 | §¢, with metric gpw =diag(1, —a*()i; (z), —52(t)Fu (¥),
vees =02 (t}pe (). The D extra dimensions are split into a d;-spheres (S d; = D).
The stress tensor will be extended in a similar way by the definition of additional
P4i- In the monopole and the Casimir cases, the large-b instability was cavsed by
the presence of a coemological constant, which was unbalanced as & — oo, For a
stable ground atate a cosmological constant is probably impogsible. The Einstein
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equations without a cosmological constant are

a b _ Bx(?
Eﬂz_ld‘ﬁ = “przlt~THl
& b’ at &b, 2 8nG
et TEE # = przmTH
b -1 _ 8aG _
3'-_+(d;—1) 3——+d. ’E#':b b? = D+2[p¢. T%]. (229)

with the last equation for each internal sphere and T, = p — 3ps — Li; dipai-

For forces to balance at a unique value of b = ¥, it is necessary to have contribu-
tions to Thx that have different dependences on & For this reason a combination
of Casimir and monopole forces will be considered.

The generalization of the D = 2 monopole ansatz will be used. An antisym-
metric tensor feld of rank d; — 1 has a field strength Fyen,.q of rank &; and has a
natural Freund-Rubin ansatz on the d;-sphere. The stress tensor in terms of the
field strength is

1
Tun = Fup.qFi 9 - EQMNFSP...QF 379, (230)
With this assumption the monopole configuration leads to

)

=l

L2t

The generalization of the Casimir forces for products of spheres is also straight-

Pdi

forward. The first generalization is 2 single aphere in even dimensions. For even
dimensions there is an additional contribution to the free energy proportional to
In(27:26%), where u is a parameter that sets the scale of the path integral. This
parameter can be set by imposing certain conditions on the effective potential.
The second generalization is to products of spheres. The free energy becomes
(ignoring the In term)

3 2. ea
F=0Y e _ (232)

=1 i



which leads to the thermodynamic quantities

—py = (ﬁmb?‘)_l_)f:%

P

ra = 3 (oa) " o (233)
di i=1 e b:

The first example of combining Casimir aud monopole forces is a single internal
D-sphere. Ignoring here and below the possible logarithmic dependence of the
Casimir force for even dimensions, the Einstein equations are

; b 8xG [(D+2)er,_,. -
i & ab 2 8@ [(D+2er,_,p _ap
Tt ta “p+z[ 0 (PN
s 5’ &5 _ sﬂ'a 4(-D + 2)61 L_‘_D 13 —-2D
b TP VEGE = bz om, 0 T
—%. (234)

From the first two equations it is obvious that either ¢; or fZ must be negative in
order to have a and b vanish at 8. The combination of the firat two equations and
the last equation gives

2 _ D(D - 1)3 "2, bf“!’ _ nDB’f(D - 4)
T 8D+ 2) (D —4)e, T PMTTTDD - ™

(235)

For D < 4, f} must be positive and ¢; must be negative. Although ¢, is positive
for acalar fields on epheres, the sign of the Casimir force is notoriously slippery,
and for other spins or other geometries it could easily be negative. For D > 4,
¢, must be positive and f§ must be negative. Therefore this simple model is only
viable for D < 4.

There are other problems with the model. If the potential is constructed along
the lines of the previous section it is found that the static extremum is a local
mazimum of the potential. The potential is shown in Fig. 2}. The point ¢/¢p = 1
is the point where @ and b are static. The potential becomes flat for large b,
but there is a small 4 instability. This potential is sicker than Casimir+4A or
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Figure 21: The potential for the Casimir + monopole case

monopole+A. The same problem occurs for a product of D-spheres for the internal

space.

The presence of fermion condensates in the Chapline-Manton action can cure
the problem. Assume that TrxT'yypx and ATavp) also have the Freund-Rubin
form on a product of three §3%s. ! The radius of one of the §%’s will be assumed
to be much larger than the other two radii which will be assumed to be equal.
If all other background fields are set to zerc, a classically stable ground state
with potential given by Fig. 22 is obtained. The new ingredient present in this
model is that the presence of the fermion condensates change the right hand side
of the Einstein equations. For the monopole-+Casimir example on a single 52, the
coefficients of the monopole terms in the (00) and {11/} equations were fixed to be
in the ratio (D — 1)/3 (see Eq. 234). With the addition of fermion condensates
this is no longer true. A stable ground state can be found (st least in the limit
that the radii of the two internal $'s are not too different).

It should be noted that the potential in Fig. 22 is not the potential for inflation.
The effective four-dimensional cosmological constant vanishes as b becomes large.

31The dilaton is assumed to be & constant in space-time, ¢ = . The dilaton field equation gives
(Hune)? = (3/2) axploo/2} Hpan p (TixTMNF ).
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Figure 22: A possible potential for the Chapline-Manton action

This is simply because as b — oo there are no stresses in the vacuum to drive
inflation. This is rather different than the usual case that the further a scalar field
is displaced from the origin, the larger the cosmological constant.

One of the lessons from new inflation is that there is a lot to be learned by
models that fail. All of the models for stable extra dimensions and inflation from
extra dimensions either fail or have some very undesirable features. Hopefully the

lessons learned from these failures will point the way to a more attractive model.

5.5 Limiting Temperature in Superstring Models

The thermodynamic properties of string theories have been studied for many
years. For a discuasion, see Ref.%. All string models have a density of states
p(m)=number of states with mass between m and m + ém that increase exponen-

tially with mass for large mass. In the large mass limit
p(m) = em™* exp{bm). (236)

The constant ¢ will be uninteresting. The constants a and b depend upon the



THEORY |a |

Open 9/2 [ »/8(a’)/?
Closed 10 | »v8(e')V/?
Heterotic | 10 | x{2 + /2){e)/3

Table 6: Density of states for superstring theories: p(m) oc m “exp(bm) as

m — 00

theory. Some examples are given in Table 7. In Table 7 o' is the “Regge slope” of

the string theory. For superstrings o' is expected to be of order mp?.

The traditional way to discuss the thermodynamics of superstrings is to start
with the canonical ensemble. The partition function for the canonical ensemble is

1+ exp [~ (K + m?)/2/T]

1 4
InZ W[dmp(m)fd’k In [l—exp[—(k=+m=)1f=/T]

LY
o d - s N
vy [2n+ 1] j; mm ™ exp(bm)mb Ks|(2n + 1)m/T],  (237)
where V is the (9-dimensional) spatial volume, n is the mass below which the
exponential form of p is a bad approximation, and K, is a modified Bessel function
of the second kind. Using the limiting form K,(z) — £~/ exp(—=2) the partition
function may be expressed in terms of the incomplete gamma function

1 Z - (T:‘E"’T) -.+uf:r [ at E,q (T};OT)] ’ (238)

where Ty = b71,

The partition function diverges for T > Ty. The presaure (p), average energy
({E}), and epecific heat (Cy) are given in terms of In Z by

4E)

8z _ a8z
=T55 (B =TT =

av Cv =

(239)

For a < 13/2, all diverge a8 T — oo. For a > 13/2, p and {E) approach s
constant a8 T — Ty. For a > 15/2, Cy also approaches a constant. If the
thermodynamic quantities approach & constant as T — Ty, T; is not a limiting
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temperature, Therefore the open string has a limiting temperature, but the closed
or heterotic string does not. What is happening in this case is that the energy
fluctuations are becoming so large that the thermodynamic deseription based upon
the canonical ensemble breaks down. In this case it is more appropriate to use the
microcanonical ensemble. When the microcanonical ensemble is used it is found
that the most likely configuration is that one string carries almost all the energy
and the remaining strings have very little energy. The specific heat in this case is

negative.

The negative epecific heat is quite interesting. A system of strings cannot come
into thermal equilibrium with a heat bath. The negative specific heat also obtains
for black holes. A possible connection between black holes and superstrings has
been the subject of recent speculation.

5.6 GUT Symmetry Breaking in Extra Dimensions

It has been shown that the phase transitions associated with spontaneous sym-
metry breaking have a multitude of interesting physical and cosmological effects.
In theories with extra dimensions there is a new type of mechanism for symmetry
breaking that does not depend upon the Higgs mechanism. The new mechanism
depends upon a topological non-trivial nature of the internal apace and will be
referred to as topological symumetry breaking (TSB).*

In the absence of external sources the vacuum configuration for gauge fields is
Ffn = 0. If the fields are defined on a topologically trivial manifold, the vanishing
of F implies that A}, = 0 also. However if the manifold is not simply connected,
then the vanishing of F in the vacuum does not imply that A, = 0. A§, # 0
implies that the gauge symmetry is broken.

To determine the details of symmetry breaking the relevant quantity is the
Wilson line ¥ related to the path-ordered exponential

= Pexp ( f; j’,dx*) (240)

where ' represents some path in the manifold. If there are non-contractible paths
in the manifold, then I/ # 1 and the original symmetry & is broken to some
subgroup ¥ that commutes with . The Wilson lines replace adjoint Higgs fields.



542

This mechanism has very many interesting properties. Of interest here are
the properties relevant for cosmology. The first question of interest is whether
the symmetry will be restored at high temperature. Does { go to unity if the
system is put in a heat bath? Assuming there is a cosmological phase transition
with this mechanism are topological defects ({monopoles, cosmic strings, domain
walls) produced in the transition? What is the dynamies of the evolution of the
system to the ground state? If the system is away from the ground state at high
temperature, can inflation occur in the evolution to the ground state?

Finally, in general there may be several possible ground states associated with
different ¥’s (including ¥ = §). At the classical level at zero temperature they all
have the same energy, namely zero. At finite temperature the state with the most
massless degrees of freedom will have the lowest free energy. This will correspond
to the unbroken state. As the temperature decreases a strong coupling phase will
occur and massive bound states will form and the number of massless degreea of
freedom in the unbroken state will fall below the number in cne of the broken
state. Will there follow & cascading of symmetry and does it have any physical
effect, These questions are unanswered at present and are under investigation.

The Higgs mechanism and SSB has proved to be an interesting part of early
Universe cosmology. It is likely that TSB will also.

" 5.7 Remnants

The final aspect of extra dimensions and cosmology that will be considered
here is the survival of a stable massive particle somehow connected with extra
dimensions. Before discussing specific particles it is useful to recall some facts
about the survival of massive particles. The expansion of the Universe generally
stops the annihilation of massive particles (mass M) at a temperature T} given by

Ty = M/T] ~ In (mmMO'o) f (241)

where o, is related to the annihilation cross section o, by

(vloa) = o6 (L“—)_" .

“ (242)
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It is useful to compare the density of particles under consideration (denoted as )
to the entropy density. After annihilation freeze out and if entropy is conserved
this ratio will be constant in the expansion. After annihilation ceases, the ratio of
{8 to entropy is given by

Yym T (243)
M mng [+5)] )

In general 6o & M™2. Since the effective annihilation cross section decreases
with mass, the more massive a particle, the more likely it is to survive annihilation.
For masses close to the Planck mass and op =~ M2, annihilation is not effective
and a particle would survive with ¥, ~ 1, i.e., about as abundant as photons.
This would be a great embarrassment, since it would result in a contribution to {1
from the massive particles of about 10?* or s0. Crestion of entropy, as in inflation,
could greatly reduce this number. If inflation occurs and the universe is reheated
to a temperature of T; <€ M, the ratio of ¥ to entropy would not be determined
by freeze out, but would be determined by exp(—M/TrH). It is likely that this
number is too small to be interesting today, but it ia possible to imagine that M

is just small enough to result in an interesting value of ¥y.

Here “interesting” means a value large enough to one day be detectable, but
small enough not to be already ruled out. The most general limit on the abundance
of massive stable particles comes from the overall mass density of the Universe.
For a particle of mass M, the limit {1h? < 1 implies Yy < 5 x 107¥7(mpt/ M), or
ny < 1.4 x 107B(mp; /M) cm™. The most useful limit is in terms of the flux
of ¥'s, Fy < 107%(mp; /M) cn~2sar 1. It is likely that very massive particles
would be trapped in the galaxy and contribute to the mass density of the galaxy.
In this case the limit is more restrictive. The relevant limit as a function of M is
shown in Fig. 23. It is denoted “pg.”

Now consider candidates for 1.

s PYRGONS:*® In Kaluza-Klein theories there is an infinite tower of four di-
mensicnal particles corresponding to the non-zero modes of the harmoenic expan-
sions in mass eigenstates of the higher-dimensional fields. These non-zero modes
are called Pyrgons.

In the five-dimensional theory the mass spectrum of the pyrgons is a series of
spin-2 particles with mass m, = kR~%, where k is an integer and R is the radius
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of the internal space (in the five-dimensional theory the internal space is a circle).
In the five-dimensional theory the k¥ = 1 pyrgons are stable. This is because the
charge operator is proportional t¢ the mass operator. The zero modes are neutral
and the k = ¥ mode has charge e, = i. The kth pyrgon can decay to & number of
k = 1 pyrgons, but the ¥ = 1 pyrgons cannot decay to zero modes.

In more ¢complicated Kaluza-Klein theories the mass epectrum is more com-
plicated, but the general features remain, namely that there are zero modes and
masgive modes with mass proportional to the inverse of radii in the extra dimen-
sions. The question of atability of the pyrgons is & more complicated one. In
general there may be selection rules that prevent some massive modes from de-
caying. Such a selection rule is present in N = 8 supergravity models with an 57
as the internal space. In general, the only reason one might imagine the pyrgons
to be stable ia if the pyrgon has a quantum number that is not represented by
zero modes, which will be assumed to include only the observed particles. One
possibility is if the pyrgon breaks the relationship of electric charge and triality. If
the pyrgon is color neutral with fractional electric charge, or is fractionally charged
Jbut a color singlet it could not decay to the known particles (so long as SU; of color
is unbroken). The second possibility is that the pyrgon has a quantum number



that is not shared with any new particle.

In superstring theories the gauge syminetries arise from a different aource, but
there still might be excitations of the extra dimensions that are stable. There
might also be excited string states that are stable. In the heterctic superstring
there are 8,084 zero modes, 18,883,584 k& = 1 modes, 6,200,272,160 k = 2 modes,
... (remember the increase is exponentiall). Some of these massive modes might
be stable. For instance in the $01; heterotic superstring there is a stable massive
fermion.

* MONOPOLES: Just as GUT monopoles correspond to topological defects in
the orientation of the vacuum expectation value of a Higgs field, there are mag-
netic monopoles in Kaluza-Klein theories that correspond to topological defects
in compactification.® The Kaluza-Klein monopoles satisfy the Dirac quantization
condition ge = 1/2 and have masses given by ma ~ mpfe ~ 10%°GeV. The
cosmological production of Kaluza-Klein monopoles is uncertain because there is
nothing that corresponds to a Kibble mechanism. It is unclear what the high-
temperature behavior of the SSB will be.*”! In this case the $SB corresponds to
the process of compactification, i.e., the symmetry breaking Diff?+* — Diff* x I
where Diff” is the diffeomorphism group in n dimensions and I is the isometry
group of the internal space. Since the symmetry breaking that gives rise to the
Kaluza-Klein monopoles is topological in nature, the restoration of the symmetry
cannot be studied by classical methods.

In theories with TSB, there are additional topologically stable excitations.
There are magnetic monopoles and particles with fractional electric charge.®® The
striking feature of these particles is that the minimum magnetic charge is gome
integer times the Dirac quantum, gyiy = kgpmmac. The minimum electric charge
is also determined by the integer k, emin = ¢/k. The expected cosmological abun-
dance of these particles has not been estimated. The present flux of the magnetic
monopoles is limited by the Parker bound, which is the maximum number of
monocpoles that can be present without “shorting out” the galactic B-fields. The
Parker limit as a function of mass and magnetic charge is shown in Fig. 23.%
Of course, it is always possible to avoid the Parker limit if the monopoles are
abundant enough that coherent oscillations of the monopoles are the source of the
galactic B-field.™l

There are perhaps other possibilitiea for massive stable particles. The searches
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for masasive stable particles in cosmic rays should be pushed. The detection of any
particle with mass comparable to the Planck mass would have enormous implica-

tions for both particle physics and coemology.
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