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ABSTRACT

A self-consistente cosmological scheme is proposed
wherein the large-scale space-time curvature as well as the massive
constituents are created simultanecusly from an initially empty
flat quantum Minkowski vacuum. The creation of each froces the
other due to their gravitational coupling. Minkowski space is
unable to sustain vacuum matter-gravitational interactions,

2

provided the dimensionless parameter Km“ exceeds the threshold

value km® - 288 r?. This parameter then plays the role of the
critical point associated with a phase transition between
Minkowski space and the self-consistently generated inflatiomary

De-Sitter space-time.

I intend to describe in these notes the considerations
we have recently made concerning what I shall call: the cosme-
logical History of the Universe. By the latter, I mean that we

are concerned with the global, large-scale structure of
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Space-Time, its evolution and above all its origin, and not with
the 1local small scale gravitational phenomenons. Our main
concern is the following: why is there something rather then
nothing, or, in other words, why is there a universe (at least
one !) rather then the vacuum; moreover what is the mechanism
responsible for the emergence of this "something" from 'nothing",
thereby giving later on rise to the presently observed consti-
tuents of our surrounding universe; last but not least, what is
the nature of this primordial "nothing" ?

With this end in view, I intend to show you as a first
step that the general cosmological problem is redﬁcible to a
quantum dynamical problem unfolding in the usual flat '
Minkowskian field theory. For that, I shall first of all recall
very quickly the main properties characterizing the universe
we observe today, on the large-scale here considered. First of
all, we learned from the Hubble experimental discovery of
galaxies recession that the universe is evelutive and not static
(as was believed by the physics community up to Hubble's time)
and, more precisely, that it is presently in an adiabatic
expansion stage. The latter is characterized by the well-known
Hubble's law, which asserts that the relative escape velocity
of two galaxies is proportional to their mutual separation, the
proportionality time-dependent coefficient being designated as
the Hubble function H(t). Moreover, it was recognized after a
major discovery by Pezias and Wilson that our universe is filled
up with an isotropic homogeneous black-body radiation, the 2.7° K
cosmelogical photon gas. In addition to these two major discoveries,
the increasingly sophisticated experimental observation points

with great confidence towards an image of the universe which
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appears the black-body photons but also the distributien of all
kinds of cosmological constituants.'This situation is in fact
characterized by a numerical value:lthat of the mean observed
mass-energy density in the universe which is approximatively

10~30 501 quote this number explicitly because it has a

gricm
double significant implication: firstly, it allows the explicit
determination of the ratio of the density of black-body photons
to the corresponding density of (observed) material constituenfs;
it then appears that for every material particle in the universe,

there are roughly 108

black-body photons, which implies that our
universe is mainly populated with these photons rather than
material particles. Moreover this number — the specific entropy
of the universe ~ is in the present stage of cosmological
adiabatic expansion, a constant in time and represents therefore
one of the main fossils of the primevall configurations of the
universe. Every plausible theoretical candidate to a cosmological
history of the universe has to deliver this number. Another
implication of the above-mentioned observed mean mass-energy
density is the following: it fixes the global geometrical
structure of the background; the latter is spatially open, flat
or closed according to whether this density is lower, equal or
greater than a given present critical energy density value. And
here occurs the well known intriguing fact, namely that the
experimentally observed density is very close to the critical
one, s$0 close that an increasing number of physicists are
convinced today that rather than due to an unexpected accidental
coincidence which would require the fine-tuning of some initial
ca§mological parameter, this property has a profound significance;

for instance it expresses that both observed and critical densities
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are in fact strietiy identical, implying therchby the spatial
‘latiess of the large-Scale cosmeloplcal backgrowund,

In short, all of these facts lead us presently to an
image of our universe which is homogeneous, isotropic, open or
more probably spatially flat and permanently expanding. I recalled
to you briefly all this because the following fundamental property
follows strightforwardly from these features: the global space.
-time geometry is conformally flat (confermally Minkowskian),
namely its geometry differs from that of flat Minkowski space
by only one degree of freedom; we denote it hereafter by a

space-time depending scalar function so that:
ds? = et (X} 482 ()

superscripts o will always refer to Minkowskian quanties.
Equivalently, the components of the metric tensor takes the follow-

ing form:

g - eA (x) Eu\, . 2}

uv

It will appear in what follows that a very usefull pa-
rametrisation for the description of this conformal degree of

freedom appears to be:

XY xr6 4% (x) (3)

where K is the gravitational coupling constant appearing in
Einstein's equations and ¢(x) is a massiess real scalar field:
the cosmological field.

Let us now firstly turn to the traditional dynamical

description of a cosmological system whose material content will
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be described here in the simplest possible way, that is by a
massive real scalar field ¢(x). The General-Relativistic act
giving rise to the usual Einstein equations controlling the

dynamics of the gravitational-matter coupled system is:

5.3 f % FE kT R@ - gawep - 0 e § VR (4)
The first term+in this action represents the free gravitational
part and its typical negative sign reflects the universality of
the attractive character of the gravitational interaction. The
last term is the non-minimal coupling of the matter field to
gravitation which guarantees the local scale-invariance in the
case of vantsking mass; .in the presence of this non-minimal

coupling, the energy-mementum tensor resulting from the action

(4) takes the following form:

o 2

1 1 2.2 1
Ty = 3,000 = 3 g Wy, + 7 g, 09" «zlg []- 3,.]¥

R) 2 (5)

1 1
e (Ruu =7 &y

At this stage comes an essential point: if we want to
extract explicitly the dynamical behaviour of the cosmoleogical
degree of freedom in a conformally Minkowskian background, then
it is particularly usefull and instructive to perform it thanks

to the following rescaling of the matter field:

¥(x) = p(x) /K76 ¢(x) (6)

Indeed, the action (4) when rewritten in terms of this rescaled
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¢(x)-field together with the conformal metric (2) and (3), takes

the following form:
s =3[ a%x Vi g, -
where wu stands for 3u¢ .

The resulting action (7) hence describes the dynamics,

unfolding in an underlying Minkowskian background, of two

coupled scalar fields: the massive y-field and the massless
cosmological field ¢(x). The free action term of the latter
appears with an overll negative sign which is reminiscent of

the universality of the attractive character of gravitation.
This sign is absolutely essential to the subsequent developments
which I shall present in the rest of these lectures. Before
discussing its consequences, let me remark the following
feature: the particular form of the action (7) strongly suggests
the following interpretation: it may be viewed as the phenome-
nological action describing a spontaneously broken local scale
symmetry (Weyl) invariance in the framework of flat Minkowski
space; the associated Nambu-Goldstone boson — the dilation - is
in this case nothing but the cosmological field ¢(x). This
interpretation is only plausible if the non.minimal coupling
tern % wz is present in the action. It follows from this
remark that if I had not any interest in the very beginning in

a cosmologicai problem, but rather in flat space-time
spontaneously broken Weyl invariance mechanism, then I would

have written the action (7) in the first instance, as the
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phenomenoclogical action describing this phenomenon. In that ca~-,
the inverse transformation to (6) together with the expressioun
(2), which lead obviously to the General-Relativistic action (4)
would play the role of the Higgs mechanism which, in this case,
absorbs the Goldstone boson in the flat Minkowskian metric

— thereby induging a curved space-time. Is this description

only a mathematical interpretation or is it the signal of some
physical property ? I shall clarify this point later on. For
the present, let me return to the action (7) as describing the
cosmological dynamics in the Minkowskian background, The latter
property implies that the usual concepts.of causality and
conservation laws, as formulated in the usual flat space-time
language, are directly applicable; but what is the price we

have to pay for these advantages: the mass term couples to the
cosmological field ¢(x) playing thereby the role of a time-
-depending interaction lagrangian. It is precisely this term
which will be, as will be shown below in the case where the
matter y-field will be treated quantum-mechanically, responsible
for the non-conservation of the number of the massive quanta,
hence particle creation. This mechanism is intimately linked

to the above-mentioned overall negative sign accompanying the
free cosmological-field action; its dynamical significance is
indeed that the ¢-field carries an opposite energy, hence
negative energy, with respect to any conventional scalar

field and in particular to the ¢-field. As a direct consequence,
this unconventional sign opens the way to a possible spontaneous
emergence of massive matter in an initially empty Minkowski
space: its positive energy being exactly and permanently

compensated by the negative energy associated to the cosmolegical
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¢-field, hence by the global large-scale structure of space-time.
Indeed, as I mentioned before, the conservation laws associated

to action (7) are expressed in usual Minkowskian form, némely:

), ETE total _ 2, (¥ (matter) T3(¢]] -0 . tﬂ)
Hence, from the restricted point of view of the energy-momentum
Conservation laws, nothing forbids a priori a non-trivial
realisation of these laws; in such a case the total Ts (total)
would permanently keeps its Minkowskian zero energy-momentum
value. In spite of this global energy-momentum degeneracy of the

matter-gravitational system with respect to empty Minkowski

(matter)
Tuv

acquire non zero values starting at a given time, call it to.

space, the two interacting parts and Tuv(¢) will
Hence, before the time to, the system is strictly Minkowskian

with both parts of its total energy-momentum vanishing

separately, whereas after time to the two matter and gravitational
contributions TE (matter) and T3(¢) respectively are separately
non vanishing although their sum is still zero. Explicitly we

then have:

p(matter) uie)
t st T, + T, -0 9)

t >t Th@atter), o, Oy pue TR g8 L g

The transition between these two regimes unfolds continuously at
time t = ty: This possible realisation of the conservation laws
(9) would then correspond to a simultaneous emergence of massive
matter comstituants together with curved space-time background,

out of an empty flat Minkowski space-time vacuum. Moreover, this
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process occurs without violation of energy;momentuﬂ conservatipﬁ,
its total net amount keeping its initial Minkowskian zero value.
In other words, the positive energy carried by.the emerging
massive matter constituants is exactly compensated by the regative
energy associated to the corresponding induced large-scale
cosmological curvature. The latter appears in this way as an
available internal intrinsic degree of freedom of the matter-
—gtavitatiénal system which allows the appearance ex-nihilis of
massiﬁg matter. More precisely, it represents a negative energy
reservoir from which the system is able fo extract positive
energy in order to create real massive particles. In other

words, if the matter y-field is treated quantum-mechanically,
there is no external source required to convert the virtual
pairs populating its vacuum into real ones, but the internal
global curvature degree of freedom itself. I will denote from
now one such a simultaneous creation of matter and curvature as

a self-consistent cosmological mechanism,

Taking all of that into account, the central problem
which is to be considered is the following: is the self-consistent
SCheme; although compatible with the conservation laws, possibly
realised dynamically, or in other words: db the equations of
motion of the two coupled fields § and ¢ possess reaiisations,
solutions corresponding to such a mechanism ? In order to
obtain an answer to this essential questioh, let nme first.deduce
froﬁ the stationarity of action (7) with respect to ¢ and ¢
respectiveiy, their equations of motion. From now on, I treat
this problem explicitly in the context of semi-classical gravity,

wherein the matter field ¢ is treated quantum-mechanically,
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whereas the gravitational part, here represented by the massless

¢-field, is treated classically. The equations of motion are:

Ow+ 5420 :
(10)
Clo - 185 b 20
Let us first analyse the structure of these equations
as well as the significance of the various symbols therein:
I write the symbol "mean value" < > for ¢ and not ¢ because,
as explained previously, we are in the context of semi-classical
gravity. The massive y-field being a quantum field, we shall be,
as usual, confronted with the appearance of divergencies in the
explicit evaluation of mean values like for example <w2>; hence
these equations (10) will acquire a physical meaning only
after a well-defined subtraction procedure will be designed;
the resulting subtracted corresponding value will be denoted
by <w2>5. It is well known that it is always a very delicate
problem to define such a procedure in an ambiguity-free manner
and this is particularly the case in curved background. But in
the present case, and this constitutes a very important property,
there exists a physical guide whicp is intrinsically linked to
the self-consistent idea. It works in the following way: it
follows straightforwardly from the action (7} that in the case
where ¢(x) = const. = ¥ &/K , then this action acquires the
traditional form describing a free massive y-field in Minkowski
space. Hence, under these circumstances, if the quantum state
of the system is at a given time the vacuum, it will remain so

as time elapses because there are no external sources which are
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able to provide energy-momentum required to create real massive
pairs out of this vacuum. Moreover, the dynamical equations (10)
reduce then to an equation for the free Y-field alone, with an
additional constraint which is <w2>$ = 0. Moreover ¢ = const.
"implies A = const., so that by equation (1), dsz reduces to
diz, hence Minkowskian geometrical background. It follows from
all these facts that Minkowski space-time quantum vacuum, namely
the geometrical Minkowski background in the presence of the
quantum vacuum state for the quantum massive y-field, is a
dynamical realisation — let me call it: the trivial solutionm —
of the equations of motion (10}, provided <w2>s = 0. It follows
from this that the general prescription for the subtraction
procedure defining <¢2>5 must be such that if ¢ = const., then
<¢2>5 vanishes. I will show you further on that this condition
defines a privileged physical subtraction procedure in all non-
-trivial cases, that is cases corresponding to ¢(x) £ const.
But, and this is of coufse the essential point, are there non
trivial cases ? Namely are there non trivial (non-Minkowskian)
solutions to the equations (10) ? In other words, these ques-
‘tions lead us to the following one: are there possible quantum
dynamical behaviours of the quantum y-field coupled to the
calssical ¢-field which are able to sustain self-consistently
non vanishing values for <w2>5 ? If yes, are some of them
continuously linked to the Minkowskian initial conditions, and
last but not least: is there some stability argument which
favours non trivial dynamical realizations above the trivial
Minkowski vacuum solution ? All of these questions are linked

to the detailed mechanism by which virtual particles populating

the Minkowskian quantum vacuum are possibly converted to real
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ones at the expanse of curving space-time. Therefore, this
problem is strongly dependent on the quantum bahaviour of the
y-field in the presence of a space-time varying cosmoiogicai
¢(x)-field. Our main task is consequently to analyse in hétaii“'}
the quantization of the y-field in these circumstances. Once
more, the Minkowskian formulation will be here of crucial help
in that it will allow us to proceed along the conventional

pattern of quantum field theory (in the presence of time-

—depehdent interaction) as formulated in flat space-time,

THE QUANTIZATION PROCEDURE

I shall restrict the explicit quantization procedure
to spatially flat conformally spaces. I insist on the fact that
this represents only a technical simplification in the present-
ation of the results which are mainly unchanged in the case of
an open universe. Moreover, in view of what have been said in
the beginning of these lectures, the spatially flat structure
plays probably a privileged role in cosmeology so that this
represent possibly not a restriction at all. Mathematically this
implies that the ¢-field or the X function are only time t-dependent.

I recall that the equation of motion for the matter y-field is

[Jv+me® yao . (1)

We then define a basis of functions {wkfi;tj} = {¢k(§)ck(t)}
with the help of the usual eigenfunctions by (x) = ehEEI(Zn)sfz

of the ordinary laplacian:
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8 = - K g . (12)

This then fixes the time-dependence of the function ik(t) to be

controlled by the following equation:

g » “i(t’ck =0 . (13)

Where

wlit) = K 4 m? A (®)

and a dat - méans d/dt. It is directly obvious at this level
that thé dynamical system (in momentum space) is equivalent to
a collection of free harmonic oscillators whose natural frequen-
cies are time-dependent, thereby inducing a population of the
modes, or equivalently a creation of massive particles. I shall
precisely analyse this behaviour in some detail and will
proceed in the easiest way (in this case), namely the canonical
formalism. The natural canonical conjugate variables appear to
be q = p and p = ¥ . The construction of the associated
Hamiltonian requires the mixed Tg component of the energy-
--momentum deduced from the action (7). After some computations,

the Hamiltonian takes on the following form:

H = f dsx_Tg - % [ a3x (4% + mler? - yayr . (14)

1}

It is an elementary exercice to check that H = pq-L and that
the canonical Hamiltonian equations 3H/3p = q and 3H/3q = -p

are fulfilled (modulo the equations of motion).

Up to this point, we managed a classical Hamiltonian

formalism. Nothing particular referred to the quantum nature of
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the ¢-field. It is precisely at this stage that the matter field
quantum structure is imposed by requiring the equal-time

commutation relations:

WGt hix' ;0] = 169 xxy . (15)

This automatically promotes the previously obtained Hamiltonian
(14) to the status of the time-displacement operator; it is
indeed straightforward to check that the relation (18) implies

that:

LV (x;t)] = §(x;t) (16)

We now use, as usually, the basis {¢k(§=t)} to define the
creation and annihilation coperators for the quanta of the

p-field as follows:

Vet = [ dk (o, WEp (e + cuc.) an

The requirement of the usual commutation relation [ak;ai.] "Gkk'
leads then, when combined with the commutation relations (15} to

the normalisation of the Sk functions:

W= gl - g fy = i (18)

where W is the corresponding Wronskian, conserved by virtue of

the equatiens of motion,

OQur main taks is now to express the Hamiltonian in terms

of creation and annihilation operators. This is deduced from (14)
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and (17) after a long but simple computation and delivers finally

the following expression:

i = I dk w, [Ng « PE (1) + F(t)ajaly » c.c.] (19)
where:

By (o) - 1412 mﬁi(t)l’:?lz"

Fy () = SRR -

et 4

The particle number operator N, is defined, as usual, by

+*
Nk'akak »
In the particular case of a static space-time, namely when A

and « are time independent, the ;k-functions reduce by

equation (13) to ordinary plane-waves:

in g t

g, = e /Ty (21)

But this implies in turn from relations (20) that:

(22)
Hence, in the static case, the Hamiltonian (19) reduces to
H - J 4k ay Ny + no. (23)

In.an expanding universe on the contrary, E is time-dependent and

Fk(t] does not vanish. It follows from these remarks that the
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Hamiltonian commutes with the particle-number operator in the
static case whereas it does not in the ca#e of an expanding
universe. A direct corollary of this property is that the number
of y-particles, whercas conserved in the static case (for example
in the case of empty Minkowski space), is not conserved in the
case of an expanding universe, Hence, it is the space-time
expansion which drives the massive particle production mechanism.
Let me insist here on the following fact: had we included from
the very baginning massless fields into the dynamics described
by the action (4), they would not be affected by the rescaling
transformation (6) — i.e. they would not couple to the cosmolo-
gical field — because of their local scale (Weyl) invariance;
hence, only massive particles are produced by the cosmological
expansion. There is nevertheless one exception: the gravitons
themselves which are produced together with massive particles
because of the absence of Weyl invariance for the gravitational

action (the gravitational coupling constant is a dimensional one).

In order to exhibit explicitly the rate at which the
massive y-particles are produced for a given expansion we need
to diagonalize the Hamiltonian (19); we proceed traditionally by
performing an adequate Bogoliubov transformation on the (a,a*J-opeg

ators; this has the form:

a®y = o ()BT + L (e)B_ . (24

It is then required that the g-operators associated to the proper
modes of the system be chosen in such a way as to cancel the
non-diagonal terms, i.e., the functions Fk[t), as well as to

insure that the functions E, {t) =1 in the static case, i.e.

121



wk = cst. These two conditions together with the commutation

relations

.ot
[Bk’Bk] = 6kk|

lead to the explicit determination of the transformation (24);

the result is

E  (t)+1
oy |? - o
(t)-1 25
E, (t)-
|Yk(t)|2 = “5_2__,

In terms of these R-operators, the Hamiltonian (19) takes then

the following form:

H = [ ak W () [N (£) + ] . (26)

vwhere the number cperator Nk(t) associated to the proper modes
Bk?operators is given by B; Ek‘ Obviously, owing to our generic
M;nkowskian reduction of t;e Eﬁsmological problem, the quanti-
zation procedure simplifies greatly with respect to the usual
curved space quantization. But moreover, and this is an essential
point, this Minkowskian formulation allows a well-defined
definition of the vacuum state of the system on the one hand,
and a simple physical prescription for the removal of divergencies
on the other. I will now successively clarify these two facts.

I recall here that our main concern was to explore the
possibility of a possible transition at a given arbitrary time
to between the Minkowskian empty quantum flat regime and a non

trivial (i.e. non empty and curved) expanding universe (see re-
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lations (9)). This implies that for times t 5 t,, the cosmo-
logical function A is-a constant and hence the ck-functions are
the plane-waves (Z1); this im turn implies the values for E and
F as given by the relation (22}, so that the Bogoliubov's
transformation (24) obviously obliges the B-operaters to be

identical to the Minkowskian a-operators for times t 3 t,, namely:

B (t) =a, , tsty . (27)

With all that in view, we naturally define the vacuum state
of the cosmological system (in Heisénberg picture) as the vacuun

corresponding to the a-operators, namely

alg> =0 . ' (28)

This choice guarantees that the density-number of particles in

each mode k, Ny, vanishes for t 3§ ty:

n (t) = <9[g;3k|9> = <gla*ale> = 0 , t sty . (29)

The population of the modes for t » ty is accordingly given by:

n, (t) = |ay (t)]2<alata, |a> + | (t3]2.<q|aal| 9> - | ) @m
k = 1% k*k Tk y x“k! Tx

Using then the relations (25} and (20), it follows finally that:

1
“k

X 2z
ny(t) = |- G - iwpl? . (31)

The choice of the quantum Heisenberg state'of the

system fixes then the corresponding initial conditions to which
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are constrained the functions ck(t); it follows indeed from the

expression (31) that:

dg, |
gt - iWt =0 for t St . (32)

In other words,-(Wk being time-independent for t s to) the

functions ;k(tJ reduce to the plane-waves (21) for t & ty -

Let us now turn to the divergence removal problem:
apart from the eigenmodes frequencies W, (t) time-dependence, the
form of the Hamiltonian (26) is identiczl to that of flat space-
-time; in the latter case, i.e. for t g tg» the usual procedure
is to remove the zero-point energy 7 [ dk Wk. A physically
natural extension of this procedure for t » ty is then to adhere
to the same prescription for t » ty» namely to subtract at each
time t, the instantaneous zero-point energy at that time:

% J dk W, (t). We then proceed in the same way for the mean square
value of-the matter fiel <¢2> which straightforwardly appears
to be:

<|p2> » J k%ak lz klz (33)

The previocusly mentioned requirements on the structure
of <¢2>5 (see the discussion following the equation (10)) are
fulfilled if we subtract, analogously to the Hamiltonian case,
the instantaneous "zero point trace":

1rk2dk 1
Z Jg 297 WY

thereby implying that:
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«° 2 W F. .

2. s k"dk 2 1 T

P> = = [t -wmwl (34)
JO 27 | kl k't e :

It can be shown in the context of dimensional regularisation
that these two subtractions are simultanecusly realised by the
inclusion in the action of a single cosmological constant

counter-term.

This closes the quantization procedure adapted to our
cosmological scheme. There is of course still one equétion
left, namely the semi-classical equation felating the classical
cosmological field $(x) te the quantum matter field ¥(x)

{see equations (10)):

2
o[ -B o2 b5 .0

but we know by equation (3) that: ¢ = /67K e?/? : hence:

2

3oh(n, ] . dale

<Qz,s

so that finally the semi-classical equation redices to:

2

3I% 4 4 A2] « kn? <y?>S (35)

where a dot means d/dt.
If we multiply both sides by the factor s'l, this relation re-
veals its General-Relativistic significance in terms of the

" initial curved space-time quantities, namely:

R =- k1) . (36)



The squation of motion for the cosmological field ¢ (x} reduces
l‘t‘hus'to ‘the usuai trace of Einstein's equations, its source
being provided by the subtracted trace of the energy-momentum
tensor associated to the quantized matter field ¢ (x); this
expresses clearly the semiclassical aspect of o;r scheme. In
short, putting together all the previously obtained relations,

the whole self-consistent cosmological problem is controlled

by the follosing set of equations:

2 2.s

3% + % 21 - km? <?> ' (a)

2.s k“dk 2 1 ‘
Wbt e | SR il l? - gy ) (b). -

]0 in | kl k't

T, + wzc = 0 (c)

k Kk | _

r (37

Wi = k% « m? e*(T) (d) ‘
& 5x - E;ck = i {e)
B, - AW, =0 , tsty (£)

In view of this set of equatiomns (37), I am now able to formulate
more precisely what I denote by a self-consistent cosmology: a
given cosmological function A(t) will be called self-consistent

if it corresponds to a quantum production rate (equations (37)

(b) + (£f)) induced by the corresponding cosmological expansion,
whose feedback response regulated by the semi-classical Einstein's
trace equation ((37)(a)) is just the one needed to sustain

precisely this expansion.
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We hence arrive at this point at a stage where the

elf-consistent cosmological scheme which was previously shown
to be consistent with the restricted conservation laﬁs is
explicitly formulated dynamically; consequently, our central
consideration now concerns the possible existence of non-trivial
(i.e. non Minkowskian) solutions to the equations ((37}(a) + (f)).
According to these equations, there is an a prieri intringuing |
fact: the left-hand side of the equation ((37)(a}) is independent
of the dimensionless (in natural units h = € « 1) parameter

2z

Kn® as well as on the mass parameter m while at the same time

the righi-haud side is explicitly dependent on Km?

on the one
hand, and implicitly dependent on m through the expression
for <¢2>5, on the other. This implies that the existence of any
self-consistent cosmological function A(t) carries a compatibi-
lity condition in the form of an eigenvalue condition on Kan?.

‘1 shall exhibit this property explicitly in what follows. There
is of course no general method for solving such a highly non
linear sat of equationé, nor to find an existence theorem. We
shall therefore adopt two complementary attitudes: firstly, I
shall give explicitly an exact sclutiomn which satisfies all
requirements of the set of equations (37); its physical interest
and its possible uniqueness will be discussed later on. Secondly,
I shall develop a perturbation scheme, which although restricted
by its perturbative character, will appear tv be unexpectedly
powerful, not only for the sclution-finding problem but also
for the understanding of the profound significance of the self-
-consistent mechanism on the one hand, and of the subtraction

procedure on the other.
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AN EXACT SOLUTION: THE SPATIALLY-FLAT DE-SITTER SPACE TIME

The function e t) t"z/t2 (38) which describes the
Euclidean De-Sitter space time as expressed in conformal co-
ordinates is an exact self-consistent solution. Indeed, the

equation ((37)(c)) then takes the following form:

Y
HORR SR !—%z—) Tt) =0 (38)

i

1f we define y(t) by:

JSRR Y2y (39)
tzy ¢ty + (kzt2 « mit*? %)y a0 (40)
Defining then:
2(t) = kt - and VZ = nzt*z - % .

the equation (40) reduces to:

22y0 o o2yt zy' «+ zZevh)y = 0 (41

where + denotes d/dz.
The general solution of the equation (40) is a linear combination
of Hankel functions with imaginary indices Hﬁ;)(z) and Hiﬁ)(z],

nore precisely:

y = a @ e vud@ L U2

where:

g(1) 2 o-Tk/Z (D) p(2) 2 oK/Z L(2)

(43)

]
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These modified llankel functions H'? and H®) are complex

conjugates of each other:

wPen® = cuBan “us

Hence,

ity = /% (a 1)) 4 b w2y . (45)

The normalization as well as initial comnditions ((37)(e);(£f))

fixes then the linear combination (45) to be:

2(6) = /8 78 HD(2) oV/E (46)

It follows from this ekpression that:

® 2
2.s k%dk () (2),.\ 7 1 :
<> = I =z |t Hiy (z) Hy () ¥~ .] (47)
0o 2% 2Vxem? ¢t*2/et

Using the definition z = kt, this expression possesses a remark-

able t-scalling property, i.e.

» 2
o> - B[] =5 gl P - L]
g 27 - .
2 z + Vv + 1’
The integral in the equation (48) is not only finite but is
manifestly also t-independent; according to (48), the trace

equation ({37)(a)) hence takes the form:

£ - ;‘z £ @il . | (49)
t

Owing to the scale property exhibited in equations (47) and (48),



the t-dependence finally cancels out, leading to

K 2
- = f(m™t
K

2y (50)

Self-consistency is thereby realized provided the functional

Z and t*? is

fulfilled. The explicit determination of the integral f(mzt'z)

relationship expressed by cquation (50), between Xm

leads to the following result:

When t° runs in the interval -» + 0 (which corresponds to the
physical domain for the conformal t-time in the De-Sitter
solution (38), then f covers the (semi-open) interval:

(1/24 - 0}; this in turn implies that the existence comdition
for the De-Sitter cosmological solution takes the form of an
eigenvalue condition on sz, namely:

2

Km*® > 288 ﬂz

(51)
The mass m of the self-consistently created particle must be
greater than a given threshold mass mthdefined by:

z 2
Kmg) = 288 m . (522

20 Gev or = 31074 gr;

This threshold mass corresponds to 1.310
I shall return later on to a possible physical interpretation of
these supermassive self-consistently created particles.

If we describe these particles phenomenologically as
a perfect fluid characterized by a traditional energy-monmentum

tensor, then the corresponding energy density ¢ on the one

hand and the pressure p on the other hand are respectively given

N



by their quantum expressions:

o - I %-%3 ny (€)W, (t) - (53)
0 _

and

2.s e-A(t)

T=0-3p=m <p> (54)

which are, due to their self-consistent character, identical to
the corresponding Einstein's General-Relativistic classical

expressions:

Ko « 3 AZe~h (s5)
kp = e Ao 7 - 52/4) . (56)

It follows then from (53)(54), or equivalently but more straight
forwardly from (55} and (56) that the self-consistently created

perfect fluid satisfies the De-Sitter equation of state:

g +p = 0 . . (57)

Moreover, the energy-density is given by:

o = :%? = const. (58)

The relations (57) and (58) have two important con-
sequence: firstly, it follows from (58) that the limit % 4 =
corresponds to the "Minkowskian" limit o + 0; this then implies

(see our previous discussion on the self-consistent existence

2

condition Km“™ > zaanz) that the threshold mass (52) corresponds



to this Minkowskian vacuum limit o + 0. I shall discuss later

the important implication of this property.

Secondly, the presdure p associated to the fluid of
produced particles is negative! The negativity  of the pressure
reflects in fact the particle quantum particle creation

mechanism; this is obvious by the conservation law, as expressed

phenomenologically:
d 33/2 d . 3x/2 '
3¢ loe M2y . op I (e /2 , (59) .
where eSA/Z is the Robertson-Walker function in these coor-

dinates. Clearly, an expanding universe (i.e. a growing cosmo-

logical function A(t)) which forces particle creation (i.e. a

31/2) implies negative

growing energy per comoving cell o e
pressure p. Moreover the negativity of the pressure is suffi-
ciently important (recall o+p = 0} to viclates the premises of
the general positivity theorems by Hawking and Penrose; these
theorems imply the inevitability of a big-bang occurring in a
finite past. Therefore in our case, such a singularity is not
required and is moreover not even present. Concerning this last
point, let me insist on the following: the big-bang singularity
corresponds to A = == or equivalently to the vanishing of the
cosmological field ¢ = 0. And this precisely represents a
singularity in the rescaling transformation (6) which then in
turn forbids the whole dynamical Minkowskian generic reduction
(the passage from the action (4) to the one given by equation

(7)) and a fortiori the whole self-consistently generated

universe concept.
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To sum up, we arrive at a stage where we have shown
that there exists at least one non-trivial realisation of the
self-consistent mechanism; but this fact may poésibly-represent
a progress in the initial question: "why is there something
rather than nothing ? " Only if the cosmological system has
some good physical reason to choose the non-trivial reaiisaiion
rather than the Minkowskian trivial one; in other words, why
does the system not persist to fluctuate quantum-mechanically
in the quiete empty Minkowski empty space~time rather than to
jump into a energetically degenerate non trivial, non empty
curved space-time self-consistent solutiocn. Why does the
virtual massive pairs populating a quantum initial Minkowskian
vacuum have a spontaneous tendency to be converted into real
ones, extracting accordingly the required energy from the
Minkowskian geometrical background thereby gradually curving it.
This fundamental question finds its answer in the following
completely unexpected property: empty quantum Minkowski space-
-time appears to be unstable in the presence of a quantum massive
scalar field coupled (semi-classicaly) to gravitation, provided
the dimensionless parameter sz exceeds the thresheld value
Kmih = 288 nZ!. Hence, as I shall now prove, it appears that
this instability condition is identical with the existence con-
dition (relations (51),(52)) for the De-Sitter self-consistent
cosmology ! This is in strong analogy with a phase transition,
with critical point at Kmih, the two phases being Minkowski and
De-Sitter spaces. From this point of view, the self-consistent
realization appears as a non-trivial alternative to the quantum

vacuum. I shall now present a proof of the instability of
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Minkowsky space subject to the condition:

kmZ > Kmih « 288 ©t

For this purpose we analyse the linearized dynamical
behaviour of a small time-dependent (global) conformal perturb-
ation 6(t) affecting the Minkowskian background for t > to»

tu being an arbitrary time — say ty = 0:

6(t) = 6/0M2 L 6(t) ; () =0 ,ts0 (60) -

The dynamical equations (10) accordingly linearized become res-

 pectively:
Clv+ m? (1e2¢k/60"% 6(t21p = 0 61

- m21k/6)12 4 k76 8(t)1<2>5 = 0 (62)

According to the relation (69), the imperturbed matter field *n
(for t < 0) is the usual free-field solution (in Heisenberg

" representation), namely:

+ €.c.] 63)

.3 ikx .
d 'k g + it
= [a e
f (zn)3 7% w72 Tk

Equation (61) then fixes the corresponding response {(for t > 0)
of the matter field to the perturbation (60), 6<w3>5 s where
the subtraction, following our general prescription, eliminates
the zero-point energy corresponding to the effective mass

1/2

n?(t) = m?[1+2(k/6)'/? §(t)]. By requiring also the initial com-
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dition corresponding to (60), i.e. &(0) = 0, we finally obtain:

kZdk

t -
2 | .
gep?s® = ;Ez &1/2 [ e, B(ty) I 3 cost(t-ty) (64)
L
0

0

This expression hence represents the subtracted response of

c¢2>5 to the global conformal perturbation §(t). The feedback
response to 6<¢2>5 as given by equation (64) for the geometri-
cal perturbation &6(t) (itself) is then obtained from.equation

(62):

- w212 -
5 -t &1/ S l dt, 3(ey) [ 5;§5 cos2W (t-t,140(2)
0 0

(65)

After integrations by parts and taking once again into account

the initial conditions, this finally leads to:

ot

- Z
s(t) = — [5(0) [ % sinZWt + {
- 8n 0 W

t w
2
. k .
. dt1 6(t1.) I ";I SanW(t-t.l)

o=

0 0

(66)

This integro-differential equation is of the convolution type .
for the Laplace transform so that it reduces to the simple

algebraic relation:

8(s) = 23(0) g(s) « Ab(s)g(s) , ' . (67)

where: g(s) .is the Laplace transform of the function

L]

2
g{t) = [ QE%— sin IWt ;
0 W



Hence:

2 2)1/2 2

gis) = I dt St g(t) .'_23 {(4m“+s
4] 5

In s/im + (szlmm

and A m Km4/48ﬂz

contrary to the first impression, g(s) is a finite even function
rd f
of s.
The maximum of the function g(s) is g(0) = /o mz.

It follows obviously from (67) that:

r §(0) g(s)
(s) = iy - (68)

Let me insist here on the fact that all these forms
are the result of a subtle combination of the subtraction pro-
cedure together with the initial Minkowskian conditions in the
framework of the self-consistent dynamical equations here under
consideration. A direct consequence of the form of g(s) is the
following: if Ag(0) = kn?/288 2 > 1, then &(s) has two real
symmetri¢ poles and its inverse Laplace transform §(t) (as well
as 6(t)), accordingly grows exponentially with time. On the

z . 1, the function §(s) has a

‘contrary, in the case KmZIZBB
double imaginary pole and S(t) (as well as 6(t)) exhibits
bounded oscillating behaviour. Thus, as announced, there is a
threshold value of Kn’ (Km2, = 288x°) which renders the trivial
Minkowski solution unstable., It must be stressed here that this
analysis based on the solution (63) presupposes that at the
jinitial time t = 0 the perturbation is such that its first

derivative (at least) is not zero.

Hence, as announced previously, the existence of the
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non-trivial solution and the instability of the trivial one are
subject to a common quantitative condition. Concerﬁing the
latter, let us stress the fact that no other physical parameter
enters into the determination of this threshold value
Kmih = 288 rz. This, then, is a fundamental dimensionless cons-
tant, characteristic of Minkowski space, which marks the
dividing line between stable and unstable vacuum fluctuations
of matter (in the present case limited for simplicity, to a
scalar field. For other models of matter, there will possibly
be some other values of Kmih)'

The very fact that a common critical parameter value
(szthl is attached to the self-consistent De-Sitter solution
as well as to the (in) stability behaviour of Minkowski space,
strongly suggests that it must be hidden implicitly within the
dynamical equations themselves. It is in an attempt to clarify
this point that we proceeded to a suitably adapted perturbative
approach to these equations. This perturbative procedure which
I shall introduce now will also unexpectedly provide a reinter-
pretation (at least te a given order) of the corresponding
unfolding of the cooperative dynamical behaviour; moreover, it
will appear that the perturbative séheme delivers (to the
given considered order), the correct values for all exactly known
situations (for example: the instability threshold of Minkowski
space, the existence condition for the self-consistent De-Sitter
solution, the correct expression for the trace anomaly — see
later); this provides us, despite the restrictive character of
an analysis based on a perturbative scheme, with strong confidence
as regards to its predictive power. Let me now introduce the main

points characterizing the above-mentioned perturbative technique:
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a very powerful change of variables for this problem appears

to be given by:

p = k/im

A(t)

W, (t) = Pt s e (69)

z2(t) = m|g|?

The idea of this change of variables is to deal only with dimen-

sionless quantities p, W_and z; this then implies that in. a

p
Laurent-type development of z in terms of the mass-parameter m2
which i5 of dimension 1 namely:
Z Z ‘w
1 2 zZ .\n
zZ =2z, + + + ees v ) (Y oz (70)
LR ns0 me P

Tha various coefficients z, are respectively tensors of a definite
. corresponding order.

The differential equation for z follows directly from
equation (13):
1 md 2.2 2
F2Z - g2 - +m Wp z" =10 . (71)
When the development (70) is inserted in equation (71), this

then gives rise to:

n

%zﬁizn—x zz‘%‘g(_mlz;ﬁ ﬁi.n-zi.z a2
-‘“Tmzwf,g—z—g nog?g = 0

Proceeding then order by order the relation (72) deli-

vers then the set of all ;n’s; for example:
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A Ayeq2 ' g
) e™)” 5 [e™M*) N
T Jens o4 Lo L (73)

Moreover the e:Spression for <¢2>5 is ¢btained from (34) and

{69) as:

B> o u? Io o2 dp Gp - g (8

The value of z, up to a given order, according to (70) and (73)
is then inserted into (74) thereby delivering the relation
controlling the self-consistent dynamics up to this order; for

example, to the order 0(—12), this leads to:
m

2 Ke"

7 (- a8, a%h (75)
2880w

22
" A Km
(A + S0 -
283«2

which is nothing but (in curved-space language)

2
Km K 1,2 ap
-R {1 - ) = ( R-<R"+ R _R") (76)
2887%  2880w° UR-3 ad
or equivalently
1 5,2 af
R"Keff(DR'3R +RaBRJ 7

where the effective gravitational coupling constant Kepe is

defined by
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K .
K = . (78)
eff Z ¥m3
288007 (1 - ————z)
288

Apart from exhibiting explicitly the threshold value Km%h = 2881:2

in the dynamical equation (75} itself, this result calls imme-
diately for the following comments: Keff being positive or

. 288n2 or sz > 238ﬂ2,

negative according to the condition Knm
the effective gravitational interaction is accordingly attractive
or repulsive. This shows a new interpretation on the stability
property of Minkowski space (or equivalently on the existence
condition of the self-consistent cosmologies). It appears indeed
that the instability of Minkowski space sets up as soon as the
effective interaction among virtual vacuum fluctuations becomes
repulsive (at least to the lower perturbation order). This
effective anti-gravitational repulsive interaction among virtual
particles (of mass m > m., )} populating the initial Minkowski
space prevents subsequent reannihilation and provides them the
required amount of positive energy to convert them into real
ones; this energy is of course extracted from the geometrical
background. This appears to be the fundamental mechanism res-
'ponsible for the breakdown of Minkowskian quantum vacuum, unable
to sustain such quantum fluctuations. This some phencmenon of
effective gravitational repulsion allows us to understand why
the resulting new configuration (i.e. De-Sitter space)} is in a
stage of fast exponential (as measured in proper time) expansion:
the massive created entities are subject by the self-consistent
dynamics to the condition m > m., and hence interacts { in the
same way as the virtual Minkowskian quanta) gravitationally

repulsively, thereby preventing a slowing down of the Hubble
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function (as 'in the presente adiabatic expenential stage).

It results moreover from (77); that the source of the
scalar curvature is that combination of second-order invariants
which is precisely the trace anomaly associated with the residual
massless part of the scalar field. Thus, at that order of per-
turbation, the mass of the massive scalar quanta is completely
absorbed in a rescaling of the gravitational coupling constant,
which describes then an anti-gravitational repulsive interaction
among massless particles.

It was previously pointed.out that the action (7) as
expressed in terms of the rescaled field (6), may possibly be
viewed as the phenomenological action describing a spontaneously
broken Weyl symmetry phenomenon occurring in Minkowski space.
The correspoending Goldstone boson — the dilaton field — is then
the cosmological field eﬁ; therefore, only massless fields would
in fact contribute to the corresponding underlying fundamental
action. The possible relevance of this property expressed in
the equation (77) to this interpretation is not clear and
represents one of the presently investigated questions.

Let us now apply this perturbative scheme to the self-
-consistent De-Sitter solution: in this case, RuB = -l(cs'gmB S0

that the equation (76) gives rise to the relation:

p=-—L 5 (79)
where

u=1-—2‘ .
288w

We hence recover in the equation (792) the previously mentioned
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existence condition for the self-consistent De-Sitter solution-

2 2 2 2

Km™~ > 288n for o » 0.

and Kn" + 288

The perturbative scheme presented above lends itself
also particularly suitably for the stability analysis of the
non-trivial De-Sitter solution. This represents of course an
important problem: the unstable character of Minkowski space
poses an essential question, namely: is the self-consistent
De-Sitter cosmology stable with respect to these fluctuations
which precisely cause the fate of the flat Minkowskian vacuum ?

The ideQ’is to perform small global conformal perturb-
ations around the exact scolution Ae(t), this is realized more
conveniently on exp(A) rather than on A itself, so that one
poses:

M) et (80)
one then anaiyses the behaviour of the perturbation &(t) as given

by equation (75).

First of all, I recover in this way the already known

exact result for the trivial Minkowski space-time solution; in

: A
this case, e €. 1, so that equatien (75) reduces to:

4) 2885° ., (2)
61 oo 6 (81)

ZBBOﬂZ

which obviously leads to the critical value Kn? - 233n2, which

borders the two regimes - stable and unstable — for the conformal
fluctuations in this case. I shall now proceed aleng the same

pattern in analyzing the (in)stability of the De-Sitter solution.
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A
I recall that in this case: e © -'t*zltz; I define henceforth

the corresponding perturbation 6(t) by

«2 )
AL f,- L 58 . (82)

The function

-A 2 .2
At) = 6(t) e % = té/t*° (1) (83)

is éasily shown to be controlled by the quartic equation:

t4™) . seZ5 4 10th - aa - 0 (84)
The general solution of this equation is given by

AGt) = a,t ) 4 azt4 + agth 4 a,tY (85)

where u,v are respectively E%;E .

A crucial role in fixing the (in)stability of the
investigated solution is played by the physical relative energy-
-density perturbation do/c; it follows straightforwardly from

(85) that:

sajo = -tP(1+p) s {86)

where p is any exponent appearing in the expression of A(t) as
given by (85); only one of them is negative, namely p = -
which "freezes'" completely the corresponding fluctuation. The

three other exponents being positive, we have a corresponding
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polynomial damping (us Minkowskian t-time elapses asymptoticallv
to £ » 0) for the corresponding perturbation. In conclusion,

the De-Sitter solution appears to be stable (against this type
of perturbations), in accordance with a previously mentioned

result.

Besides from its stability, another essential question
concerns the uniqueness of the De-Sitter solution. And once more,
the perturbation scheme offers us unexpectedly a strong indication
in this questionning; it leads indeed to a quite remarkable
property shared by the matter-gravitational system. It appears
indeed that the whole dynamics as regulated both by the self-
-consistently gencrated trace and energy-density equati?ns, is
subject to a dissipative conservation law ! In short, considering
Yy H{EY = £ as the basic dynamical variable, where H is the
Hubble function, the complete set of self-consistent equations

limited to the given order of perturbation reduces to:

& [ved o g £2 + ¥ %) . c12y £242 87

where v = K/2880%°, u = 1-km®/288v% and » = d/dt, where T is

the proper time. This is nothing but a dissipative conservation
law with the dissipative term -12v £232 - _3vfi®. The fact that
fhe Hubble function H appears as a privileged degree of freedom
which characterizes the self-consistent matter-gravitational
dynamics is not surprising because it is the only fundamental
scale available with respect to which the initial fluctuations
can.be compared. The potential V(f) = % f2+§ €% which charac-

terizes the dynamics controlled by equation (87} hence appears
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as the "effective potential" for the self-consistent cosmolo-
gical problem (at that order of the perturbative scheme}. It
clearly gives rise to a spontaneously broken symmetry behaviour

2 > 288u2; the corrgsponding threshold

when u is negative, i.e. Km
parameter hence is identical with the previously obtained critical
point for the phase transition between Minkowskian vacuum and

the self-consistently generated cosmologies. It is obvious that

if p > 0, the minimum of the potential V{(f) is located at f = O,
- 30 Minkowski space-time is stable; if u < 0, the system jumps to
‘the new.stationary point f4 = .u/v the "true self-consistent
ground-state'" which is the De-Sitter space. It is straightforward
to show that the dissipative term prevents oscillations around

2

‘this "true ground-state'. Hence, if p < 0 (i.e. Km“ > 288n2),

‘Minkowski space is unstable and the universe inevitably tends to
a De-Sitter space characterized by an energy-density K¢ = 3Hz,
with Hz = u/v in complete agreement with the previously obtained
results. Moreover, the very existence of this potential V({f)
strongly suggests that the De-Sitter solution is the unique

dynamical realisation of the proposed self-consistent mechanism.

We are obviously not presently in a De-Sitter exponen-
tially expanding universe and certainly not surrounded by
permanently céeated supermassive constituants. Qur aim was
nevertheless to construct a whole cosmological History which
also encompasses the present adiabatic expansion stage of a
universe filled up with ordinary matter and radiation. With
that in view it is essential to understand why the super-massive
particle production stage stops. The situation is the following:

the self-consistently produced supermassive De-Sitter particles
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are interpreted as those required by the grand unification
scheme, or alternatively as primitive black holes — the primeval
source of temperature — whatever they are, they have a finite
decay or black hole evaporation time which precisely corresponds
to the De-Sitter production duration stage, Indeed, the decay
provides massive ordinary elementary particles as well as
photons; this then implies a breakdown of the eigenvalue self-
-consistent existence condition (the masses of the presently
observed constituants of the universe lying of course under m,,)
which inhibates the aboundant self-consistent feedback production
mechanism; on the other hand, the De-Sitter equation of state is
no longer realized (appearance of positive pressure associated
for example the photons resulting from the decay process); these
two facts imply that the cosmological behaviour is no more self-
-consistent and therefore, the dynamical equations controlling
this behaviour lead no longer to a rescaled anti-gravitational
coupling constant Keff (see relation (78)}). This then explains
why the De-Sitter regime stops and why there is a turn-over to

a slowing-down expansion rate (i.e. the presently observed
adiabatic expansion). This decay process hence gives rise to the
same consequences as those resulting from the release of the
energy associated with the null Higgs field in the framework

of Guth's traditional inflationary conjecture: in both cases,
the exponentially driving mechanism disappears and the infla-
tionary expansion stops (no more negative pressure nor cosmic
repulsion) and an enormous amamnt of energy and entropy are then
released. Hence, our scheme represents an alternative to Guth's
idea that the energy density of the false vacuum sssociated to

the supercooled phase drives the '"steady-state stretch”. Instead,
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it is the instability of Minkowski quantum vacuum which forces
the system, in our context, to underge above szh » 4 phase
transition from an initial Minkowski space to the self-consistent

De-Sitter universe.

In conclusion, let us summarize the chain of facts
presented above in the shape of the following cosmological history
Minkowski space is unable to sustain vacuum matter-gravitational
inferactions and therefore transits to a new phase, the De-Sitter
universe. The latter, an essential ingredient of inflationary
type universes appears thus as the natural primeval stage of
physical space-time. After decay of the primeval constituants,
there is a turn-over to the present cosmological free expansion
configuration. The universe built up in this way, appears thus
as a non-trivial energetically degenerate alternative to the
quantum flat vacuum.

Clearly the present developments are too embryonic to
permit any kind of judgement or preference. What really are our
very massive De-Sitter constituents (more than ten times the
Planck mass) ? If they are indeed black holes, can they be
simulated by a quantum field and if not is Minkowski space never-
theless unstable with respect to such massive fluctuations. In
spite of all these uncertainties, it is very satisfactory that
our self-consistent scheme leads naturally to a primeval .infla-
tionary stage, since for the present it is the only mechanism
which offers the possibility of success in confronting the
problem of causality posed by the big-bang.

We are not at all claiming to have obtained The Cosmo-

logical History of the Universe. Qur more humble purpose is only
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to show that it is possible to conceive and to construc expli-
citly, in the framework of the traditional laws of Nature, a
cosmological history of the universe which avoids the big-bang
and a fortiori its "unpleasant” consequences, and moreover

* provides a "matural" inflationary primordial scenario.
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