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ABSTRACT

We examine the gravitational coupling of neutrinos to matter vorticity;in the context of the
Einstein's theory of gravitation and for technical simplicity we have considered the GHdel
model as the gravitational background, whose matter content has a non-null vorticity.Dirac's
equation is solved by separation of the neutring amplitudes into invariant angular-momentum
and energy modes. These modes provide two distinct representation bases for the algebra of the
total angular momentum of the system (one finite-dimensional and the other infinite-dimen-
sional). The presence of a vorticity field of matter generates, via gravitation, microscopic'
asymmetries in neutrino physics. The angular momentum space appears to be opolarized along
the direction determined by the local vorticity field H. At the microscopic level, currents
are asymmetric along the direction determined by the vorticity field:Neutrino {antineutrino)
currents are larger along the direction antiparallel (parallel) to the vorticity field. in
the case of production of pairs under CP violation a net number asymmetry may be generated
between neutrinos and antineutrinos.

1 - INTRODUCTION

Cur purpese is to describe the effect of matter vorticity in the physics of neutrinos, the
coupling of neutrinos te the vorticity field being realized through gravitation.This problem
is not purely academic because the observed anisotropy of the microwave background radiation
can possibly be due to a large scale primordial vorticity of the Universe (1,2). This fact
and the present observed rotation of galaxies and nebulae could be an indication that the
rotation of matter was a remarkable feature of earlier eras, playing an important reole in
the dynamics of the primordial universe.

The present paper continues a program initiated in ref. (3), in which we have examined mi-
Toxopic asymmetries in neutrino physics (generated by matter vorticity), the amplitudes
for neutrinos/anti-neutrinos being described by quasi-Cartesian invariant excitation modes
of the neutrino field. Here we discuss this problem in terms of hyperbolic excitation modes
of neutrino field, which correspond to a new coordinatization of the group manifold of the
medel, The advantage of these hyperbolic modes over the quasi-Cartesian modes is because
they define 2 complete basis of total angular momentum eigenstates for the coupled neutrine
field. Also in these modes we were able to separate Dirac equation for mass u # 0, which
shall be the subject of another publication (4).

The gravitaticnal field is considered here as described by the Theory of Gengral Relativity
(Einstein's theory of gravitation) and for technical simplicity we take GHdel universe (5)
as the gravitational background. It is the simplest known solution of Einstein fed equations
with rotating incoherent matter. The vorticity fieid of matter is connected to the property
that matter rotates with nenzero angular velocity, in the local inertial frames o its comoving
observers.The model admits a global time-like Killing vector, a fact that is crucial for
constructing invariant energy modes of the neutrino field. Neutrinos are introduced as test
fields over the background gravitational field, and are described by spinorial fields which
satisfy Dirac's equation on the curved space-time. :

In sectien Il we characterize the GHdel universe as the Lie group K x R with a left - ip
variant metric defined on it.This garantees that all vector fields over H> x R exist glo-
bally, and that the hyperbolic excitation modes - in which we decompose the neutrino field
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are invariantly and globally defined over the manifold. In Section ITI, the local dynamics
of neutrinos is discussed, with its basis in Dirac's equation,lobtaining as a result the
local precession of the spin of the neutrino and the conservation of helicity, A complete
basis of neutrino solutions is obtained, which are eigenstates of energy, helicity, total
angular momentum and of the projection of the angular momentum along the axis determined
locally by the verticity field. They satisfy boundary conditions related teo the test field
character of neutrines. In sections IV, V we construct the Fourier space associated to the
above basis and discuss the local microscopic asymmetry of neutrino emission which appears
in the presence of a vorticity field: we also discuss the asymmetry between neutrino and
antineutrino amplitudes which could appear due to CP violation and could produce a net
asymmetry between the number of neutrinos and anti neutrinos.

2 - THE STRUCTURE OF GUDEL UNIVERSE AND THE HYPERBOLIC EXCITATION OF NEUTRING FLELDS

Gldel's universe is shown here to have the structure of the simply connected Lie group HSxR.
modulo identification of points, with a left-invariant metric introduced on H° x R and which

is a solution of Einstein field equations for a perfect fiuid. This provides a  global
characterization of the complete basis of solutions in which we expand neutrino fields,
because the vector fields and forms used to construct the invariant excitation modes are

globally defined over the group manifold. The methods used on this section are borrowed from
Dzsvath and Schicking (6).

Let E, be the four-dimensional Euclidean space with Cartesian coordinates qu=(q0,ql,q2,q3) ,
and the unit vectors zlong the Cartesia axes denotes by Eu' With a multiplication law de-
fined by
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E, becomes an algebra, the quaternion algebra, and the vectors

d=a 8, a3+ 5 ql g, (2.2
1 .

are called GHdel gquaternions, The algebra multiplication of quaternions is non-commutative

and satisfies the properties of associativity and distributivity. From (2.1) we have that
30 is the identity of the algebra, with the quaternions of the type E = qp 30 isomorphic to
the field of real numbers, and we hence identify q 30 “ qq-

For a quaternion (2.2) we define its conjugate quaternion by

3

a* = a, EO - 4 qt 3i (2.3)
We then have 4 3* = 3* & = (@)% + @1)? - @)% - (@2 Denoting N(@ = (%)% + (¢h)?
(qz]2 - (q3]2, every quaternion q such that N(q) # 0 has an inverse a-l = (N}~ " g+,
. . . . ++-1_--1+_ .
which obviously satisfies q q = q q = 1.
The equation of the 3-hyperboloid H> can be expressed
il ] T
§8 - @H v @h? - @t - w@hi - (2.4)

3

We now identify H™ with the group of motions of H', with H” acting on itself by left mul-
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tiplicatien. In fact, for any quaternion vy € 0 (v v = 1), .8 left motion of H” on jtself
is expressed by

it =v3 (2.5)

and we have, using that {35)* = B* a* ,

H3 is a simply transitive group since for each EA HS, there exists only one left translation
- - N +, > T
T from 3 to a given a', namely r = a‘ a”.

H3 acting on itself by left multiplication (2.%) is a group, and the independent left in-
variant {7) vector fields and/or forms over n? yield a representation of the algebra of s,
To obtain these fields and forms we proceed as follows. Representing the unit Gidel qua-

ternions [30. 3i) by the matrices

1 0] o 1
- _ + _
eo = \ el
0 1 -1 0
) {2.6)
0 -1 -1 0
- _ —+ _
€z = ’ €3 =
-1 0 0 1
) {
we replace every quaternium 4 € g by the matrix
3 1 2
qD ~ q 4 -9
A = (2.7)
2 0
'ql -1 q * q3)
with
det A =1 (2.8)
The quaternion multiplication goes over to matrix multiplication. Intreducing on [-l3 the
coordinates (t,r,$)by the transformations
qID = coshr «cos %; t
q1 = coshr sin 4; t
{2.9)
q2 = -sinhr cos (%E t - b}
q3 = sinhr sin (%E t - &)

where 0 < 4; t, 4 < 27, 0 < r < o, the left-invariant 1-forms " over H3 are obtained by
calculating (8)

o= a1 da = o* 3 (2.10)

and we have
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and the last equality (2.10} yields the three independent left-invariant l1-forams

g" = = s8in (V7 t - ¢) dr + cos (¥Z t ~ ¢) sinhr coshr d¢

cos (¥Z t - ¢) dr + sin (VT t - ¢) sinhr coshr d¢ (2.11)

=]
L]

o3 = Y2 (4t + /T sinh’r dg)
2

Dual to {(2.11) we have the corresponding left-invariant vector fields

The

and

X3 = vZ a/at
" sinhr 3 _ _. 3 cos{vZ t-¢) 3

Xy = =/T cos(/7 t-9) coshr Bt sin(v7 t-¢) 5r * sinht coshr EX) (2.12)
- . . siphr 3§ _ ] sin(vZ t-¢) 3%

X, 72 sin(/7 t-¢) coshr 3t & cos (/7 t-4) 3r * Sinhr coshr 3%

left-invariant vector fields and forms (2.11) and (2.12) satisfy the algebra of H3,

XXl = - 2,

[X3.X5] = 2% (2.13)

Xy.X%5] = 2X

dcl =+ 2 ag“ Mg

Z

de“ = - 2 - A g (2.14)

d03 ==20 Aos

We have the analogous picture for right motions of the Lie group H® into itself, namely (cf.

(2.8))

The
the

and

't =qv ' (2.13)

corresponding right-invariant vector fields and forms over H® are obtained (similarly to
above method) by calculating (8)

w4

o= da ATl A ¥ (2.14)

we have
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sing)dt+(sinh“r-sinhr coshr sin¢)d¢ -sinhr coshr cosd d¢

The last equality {2.14} gives the three independent right-invariant l-forms
pl = %; (sinhzr + coshzr]dt - sinhzr de¢

p“ = - cos¢ dr - ¥Z sinhr coshr siné dt + sinhr coshr sin¢ d¢ {2.15)

- sing dr + ¥Z sinhr coshr cos¢ dt - sinhr coshr cosy d¢

el
n

with the corresponding dual right-invariant vector fields

I A N
Yl 2 (—2— ﬁi-ﬁ)
= /2 sing sinhr 3 caso 3, sing sinh’r + cosh’r 3 (2.16)
coshr Bt 3T Sinhr COSAT kT .
Y. = - /% cos sinhr 3 _ sine 9 _ coso sinh®r + coshzr KR
3 €059 TaShr 3t ar sinhr CoShT 39

which provide the representations of the algebra of HS,

Xp.¥] = 25

[Y,.¥,] - -2¥, ‘ (2.16)
D’z'Yzj =
and
dpl = -2 pz A 03
ap? = - 2ot 2 s’ (2.17)

403 = 2,1 4 o2

We obviously have
Xg¥g =0 . 131,23 (2.18)

Taking on the one-dimensional marifod R the coordinate z, with vector field X =8/0z and dual
1-form 04 = dz, the group H3 x R can be characteTized by the left-invariant 1- forms{u az,o{
U‘} which provide a representation of the algebra of H3x R, namely satisfy (2.14) and dg¢”=0,
and which are a basis for the 1-forms on H® x R. Correspondingly the left-invariant dual

vector fields (xl.xz.x3,x4) satisfy (2.13) and
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[%.X,0=0 , i=1,2,3, (2.19)

3 3

and provide a basis for the vector fields on H® x R, The manifold H” x R is the covering

group of the algebra (2.13) and (2.19},

3

We obtain the GBdel universe by introducing on H” x R the left-invariant metric

2 2

ds - (ohH? (2.20)

4 3,2 1
= L7 o) - (o )2 - (02)
L
where w is a positive constant. The metric (2.20) is a solution of Einstein equations (%)
with cosmelegical constant A and incoherent matter whose density p must satisfy

ko = w = - 24 (2.21)

The four-velocity of matter is 3/3t. The model is stationary because {(2.20} admits a time
like Killing vector. The velocity field of matter has zero expansion and shear but has a
noen null vorticity

fn= ¥Tw 3/3z (2.22)

We remark that the Gldel universe is locally isometric to (2.20)}, but concerning connedivity-
in-the-large the above model is obtained from the G8del model by identification of the points
(vZI/2 t + 2nw, v, ¢, 2}, n = integer. In the GHdel universe any geodesic of the congruence
determined by 3/3t is time-like and open,

From (2.18}) and (2.20) we have that GHdel's geometry admits the five Killing vectors
3 3
(Yl ’YZ ’YS' "a_z' » ﬁ] (2‘23)

All these vector fields are globally defined on the group manifold (10). We then select the
Killing vector fields

3. 3 3 1 /T o
Gr 3t 1N - % 50 _ (2.24)

to construct the global invariant modes ¢ defined by (11)

I ¢ = i ky ¢ \ i ¢ = -im@g (2.25)
afaz (3] 3 7 (3) /%4 (2) (2] _
£ ¢ =~ ic ¢ (2.20)
ajae (0] (o)
with respective solutionS(%s) Ry eik3z‘ Segy ™ e 1M ang 0y ™ e'iat_ 3/at is a globally

defined time-1like Killing vector generating time translations and we interpret (2.20)as the
definition of invariant energy modes; 3/3t actually defines the Hamiltonian operator which
describes the local dynamics of neutrinos. We use the invariant modes ¢{i] to separate
neutrino amplitudes in the modes (e.m,k.} and which are globally defined.

3 - THE LOCAL DYNAMICS OF NEUTRINQS AND THE SOLUTIONS OF DIRACS EQUATIONS

Neutrinos in interaction with gravitation is described by spinorial fields in the curved
space-time. For a general review of spinors on a curved space-time see Ref. (12). Here we
use four-component spinors from the point of view of the tetrad formalism. We choose a tetrad

eéA](x) such that the line element is expressed (13)as
z . A B
ds nap 9 8 (3.D
where o* = eéA]dx“. The definition of the neutrino wave function in a curved space - time

involves two group structures. Its spiner character is defined with respect te the local
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Lorentz structure (3.1), that is, it provides a spinoral representation of the local lorentz

group

oh = 1h (x) of (3.2)
with

LA (x) ngg Le (x) = npg (3.3)

These transforma.iens, which can be made independently at each space-time point, leave (3.1)
invariant. Under {3.2) and (3.3) the spinors ¢ transform as

' (x) = 8(x) ¥{x) (3.4)

where the 4 x 4 matrix S(x) must satisfy (14)

w1 A -
wht @ B s A s (3.5)
On the other hand, spinors y transform as scalar functions with respect to generd coordinate
transformations of the space-time, and thus provide a scalar representation of the isometry

group of the space-time.

The Lagrangian for neutrinos is

- ’ -
i G T - i Y e (3.6)

o

In the above formalism = y 1y~ , where YO is the constant Dirac matrix. The spinor covarian

derivatives are given by

- a -
V¥ e(A) 3ﬂ ] Fy v
{3.7)
- _ & - -

V‘Aw e(A) aa¢;+er

where the Fock-Ivanenko coefficients T, have the form
1 B _C

Pp == % Ypca ¥ Y ' (3.8)
The Ricci rotation coefficients y,p~ are defined by

Yapc = - ©F eurny ©f (3.9)

YABC (A1 [e a(B) (0 ’

and Dirac equation fer neutrinos coupled to gravitation is expressed as

YA vA y = YA {eC(lA] 30- - rA) v =20 (3.10]
For (2.20) we take

)] L o2
a° = a(dt + ¥Z sinh"r de¢)
Bl = a dr
(3.11)
62 = a sinhr coshr d4¢
93 = a dz

where a = 2fw. With this choice the Fock-Ivanenko coefficients {3.8) have the expression
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/I 2
fo e v ¥
r, = 42 y0 y? (3.12)

2 s 2
_ Y2 0.1 1 cosh®r + sinh“r (2 1
T =@ ¥ *713 coshr sinhr ¢ Y

For a neutrino field in invariant energy excitation modes {2.20), and eigenstates of 75,

Ye=Lv . LP=1

We have in the representation used (I3)

3 4, .
¥ = e ET (3.13)
Le (X)

and using (3.11) and (3.12) Dirac equation (3.10) yields

eLyp=7% .7y (3.14)

-
Here T is the spin matrix [g g] and T is the generalized local momentum operator

Teiad®a -if ey (3.15)

2 i 12
* _ ¢l cosh®r + sinh™r
where ny (7 coshr sinhr » 0, 0) and

w ¥ = (0, o,ﬁzjﬂ) (3.16)

3
is the vorticity of matter in the local frame (3.11). We use the notation I-3=k;1AkBk. From
(3.14) we have that the operator L. T « ¥ is the Hamiltonian of the system (expressed h terms

of objects defined in the local frame determined by (3.11)).in the sense that the time
development of any operator acting on the space of neutrino wave functions is propertional
to the commutator of the operator and L T+ T. With respect to this Hamiltonian T.T is

conserved, that is, the projection of the spin ¥ on the direction of the local momentum T is
conserved. In this sense L = ¥ « %/¢ has a precise meaning as the helicity of neutrina, in

the local Lorentz frames determined by (3.11). The wave functions ({3.13) are energy and
helicity eigenstates for neutrinos. later we shall characterize neutrino amplitudes by

L=-1, ¢ > 0 and antineutrino amplitudes by L = + 1, & > D.

The motion of the local momentum 7 is calculated 7=i (¥, L ¥ « 7| and we have
T=vielTad {3.17)

Since the prejection ¥ . ¥ is conserved, that is, the helicity L of neutrines is conserved,

we have from (3.17) that, for a given sign of e, the spin ¥ precesses locally about

the direction determined by ¥, with angular velecity proporticnal to vZ ¢ ¥ and independent

of the sign of L, that is, independent of being neutrinc or antineutrine.

To separate Dirac equation for neutrino in Gddel's background we consider neutrino wave
functions which belong to the complete set of modes (e, ks. m, m'} described by
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$(r,¢) " _
v = e—l 3z - iet (3.13)
Lé(r,9)
and
a(r) e 100
o(r,e) = . (3.19)
g(r) e"im'®
-
which are invariantly and globally defined, as we have discussed in sec. 2. Using (3.18)/
(3.19) and the explicit expressions of e%A) from (3.11), Dirac equation (3.14) reduces to
. . 2
dB m' sinhr 1 ,cosh™r + sinh®r _ .
Ir * SInhr coshr © ° T e coshr * * 7 { COShr SinhT } 8= - iEga - (3.208)
- 2 s 12
da m sinhr 1 cosh®™r + sinh“r _ .
dr ~ sinhr coshr % 7 T coshr ® * 7 C—Coshr sinhAr—) © - - 1E;8 (3.200)
where we have introduced the notation
_ v
By = L{- ¢ + 5% - Lkg)
- {3.21)
E, = L{- e = 5 + Lky)
Introducing the variable x = cosh2r the second-order equations resulting from (3.20) are
2 - -
2 dn . ~ -~ da _ m-1/2Y{m-1/2) -
(x*-1) 5 s [2x+(n'-1/2)-(m-1/2)) 33 + _;gr K a JERE (3.22a)
where Q = el 4 %E e (m'+m+1l) + E%?L , and
2 : -
2_,y d°B , ' - - d8 ' _ (m'+1/2) (m+1/2) -
(x*-1) ) + [2x+(m'+1/2) - (m+1/2) ] I + [%%T +k = K 0 (3.22b)
where Q' = cz + %; e (m+m' - 1) - E:?L-. Far both cases
4k = (E;E, - 2¢2 + 1) = - €2 - (kg - %E 1%+ (3.23)

For consistency, if we take a given solution o of (3.22a) the corresponding solution B is
ebtained by using (3.20b); similarly for a given solution g of (3.22b), the corresponding
solution a is obtained from (3.20a).

We distinguish the set of solutions (15)
¢(m,m' k,,L.e)
3 -ikzz _-iet
v(m,m' ky,L,e) = e h3% e (3.24)

L¢(m,m* %5,L,€)

where

m'-m+1 m+m' e .
@ EhT T 6P T enT EebeilFenin

$(m,m' kg L€) = ' -m-1 mem’ (3.25)
x+1.7 T -

E )
iL{erLk- 20 (A2 (x3-1) ¥ (o) T E(a.b,cel;gKpenine
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F(a,b,c: E%E) is the hypergeometric function (16) with argument 13X ang arameters
5 P

-

R

bR, T, 2322 (3.26)
c m+m'+]1
wheTte
n= /et v (i - v2/2 1)? (3.27)
On the space of solutions (3.25) we now define the operators
(1)
Joy = e i (3.28)
(') (2) '
0 J(_)
where ’
{(1)_.i¢ 1/z2 3 . 3 L.¥Z x-1,1/23 . 1 x
J el {{x“-1) Ix 1 '(—;z'ﬁ—[f W 1—2-‘(x—+~l-) I (T) 1)1/_2 U (x2_1]1/2}{3o29)
{2}__i¢ /2 8 . X -3 AT .x-1,1/22 g+l 1 g x
Jioo=at VT fx“-1} o +i +iLA (22 3¢ *( ) 1(3.30)
% Iz R T SeT TUEINTTTI GTITT
and
(1)
J J{+) i (3.31)
{t+) (2) )
0 J(+}
where
11} 1/2 B : 1/2 a +1 1 X
Jtiyme 11’{(:: -1) 1(_2—)177 r‘ 17(__1.] (12_)[ 5T -3 (xz-l]llz} (3.32)
3{ee it pt/e L 1_7—177 RO LLYe = SRLE R 33)

We have denoted
m' = m+ o

We define J(3] by the relatlon]_J(+],J(_)j - ZJ(S) and obtain

. 3 ¥ZI 2 g 3
Iy =i g7 ) *30

The effect of the operator (3.28), (3.31) and (3.35) on the set of soluticns {3.25) is

") 4 (m-1,m0-1)

J(_] ¢(mtm'} =

+ [T)_z_l._mq-% _z_.x_177} (3.
x*-1) (x*-1)

(3.
(3.

(3.

34}

35)

TAY
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J(py ¢mm’) = - TﬁzﬁngT ¢(m+l,m'+1) _ {3.37)
Iy ¢y = v §r Fe) emm) (3.38)

2
FENTR U IRIEWCPRE PRSP P IR /S PTG R DIERS S SICE D

From the definition of J(S) and from the relations

LIy I = = T (5.39)
Tl - 3.
ey = I (3-40)
we see that the operator J(s), J(+), J(_) generate the algebra of angular-momentum. By
using (3.39) we can show that if ¢(m,m')} is a solution - which is eigenstate of J[3} with
1
eigenvalue E%?_ - €T then J ) ¢(m.m*) is also a solution of the set (3.25) which is

eigenstate of J 4, with eigenvalue E:?; - %; e + 1. Analogously from (3.40) J p(m,m') is
also a solution of the set {3.25), which is eigenstate of J(B) with eigenvalue

L
E:;L._ - e - 1. So given ¢#(m,m') it is possible to construct a sequence (in value of(m,m")}
extending indefinitely in both directions of terminating if J(+)¢ and/or J(_)¢ vanishes feor

+ 1
some value of EL§L-.

Unfortunately in the present case it is not pessible to use the same procedure as in the

case of the spherical harmonics basis for setting bounds on the range of m + o/2, because
the operators J{l) =3 [J(+) * J(_}) and Jezy * é% (J[+) - J[_}) lack any hermiticity
property, with respect te the normalization scalar product defined in section 4 for the
functions(3.24)/(3.25). There occurs an exception for ¢ = 0, in which case J[l) and J(z) are
anti-hermitian. J(S] in all cases is obviously hermitian (17). To proceed we shall then
make use of regularity and boundary conditions on the wave functions, and obtain two dis-
tinct sets of solutions, one infinite dimensional and the other finite dimensional re-

presentation basis of the algebra of angular-momentunm.

On the set of solutions (3.24}/(3.25) we now impose boundary and regularity conditions, na-
mely that neutrino fields (which are test fields and do not contribute to the curvature
of the cosmological background) are finite perturbations at any space-time point. We impose
(18)

lim w7 ¢ = finite (3.41)
x+1

tim (x2 - Y2 Ty =0 (3.42)
x-)-m

By using {3.25), the regularity condition (3.41) implies

m > % (3.43)
So starting from a given solution ¢(m,m') and sucessively applying J(_) we necessarily
arrive at a solution which do not satisfy (3.43) unless J(_] ¢ = 0 for some value (m,m').
From {3.36) we have that the sequence finishes on the left for ﬂ%ﬂ— = - 1/2, and we must
then have

m+ m'

52> -1/2 (3.44)
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that is, ~—T—-takes half-integer values greater or equal te - 1/2. In the right the sequence
could in principle extend to infinite values of ~—I—-by successive appl1cat10n af J +)" Con-

dition (3.42) will nevertheless impese a bound on the values of El—-2-'"—-011 the right,

From {3.42) two distinct possibilities arise (19). Either

(I} a = negative integer or zerc (3.43)
orT
() c=b = negative integer or zero (3.46)
with
m+m' VZ 1 n
a= -+ e vz 3 {3.47)

b=ﬂ—izl'+§e+%-§ (3.48)

for both cases (I} and (II}, and we obtain the two distinct set of solutions:

Type (I) solutions

We denote any negative integer or Zero by m+m o j, with j = half-integer > E;?L, that is,

-1/2 < BER < (3.49)
From (3.45) and (3.47} we then have

j+~'lzzr.+%-+%=0 (3.50)
which implies

s VETY P

e = - VZ (2j + 1) - (2j + 1+ (kg ~ L¥Z /2) {3.51)

The corresponding positive-energy solutions of type (I) are obtained from the symmetry
*

¢ + iy'y of Dirac equation (3.10), where * denotes complex-conjugation. We remark, for
example, that the eigenvalues of J(S) and J% for this case are given by m + % + %g £ and
- %F e + 1), respectively.
Type{Il)solution
We here denote any negative integer or zero by - (j + 1/2), where

j = half-integer > - % (3.52}
From (3.46) and (3.48) we have

. ¥Z 1 n

j- e+ * = 0 (3.53)

2 FAR3
which implies
=+ 7 : j . 4 2z
€ = (2 + 1) + / {2j+1)7 + (kg = L /Z/2) (3.54)

The correspondlng negative-energy states of type (II} are obtained from the symmetry
[ 1Y ¢* of Dirac equation (3.10}.

We remark that for type (I) soclutions the values of ~—T;-are bounded for a given j (c£{3.49),
and for type (II) solutions the range ETF_ > - f is completely independent of the value of j.
In other words, for a given j = half-integer > - 1/2, type (I) solutions provide a finite
dimensional (dim = j + 3/2) representation basis for the algebra of angular momentum, while
type (II) solutions provide an infinite dimensional representation basis for the algebra of

angular momentum. In the above discussion we have discarded nermalizable solutions which
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could not constitute a basis of representation for the algebra of angular-momentum, although
we should mention that some of these soluticns have interesting features as zero energy and
eigenvalue of J(s) equal to an integer.

The zero-energy modes in both types (I) and (II) solutiens occcur for i =-1/2 and kS-LJT/Z.

For these modes J{s) = E%— (actuvally its eigenvalues), and the statistics (boson or fermion
character) depends on the value of u. Also the modes j = - 1/2, ky = 0 with corresponding

|ef = ¥Z/2 have the eigenvalues of the total angular-momentum projection J(s) =+ 1+ % as
well 23 =+ 1+ % » respectively for positive/negative energy solutions - in other words,due
to the gravitational coupling to matter vorticity, these massless fermions for ¢ = 0 are
converted to bosons polarized along the direction &, which eigenvalues of projections J =

(3}
= 23 = + 1, respectively for positive/negative energy.

H_:_ﬂQMELEIE_5EI_QE_5ﬂLuIlQNiLJEmMAL1ZﬂIEHiJﬂﬂLﬁEﬂEBAL1ZED_EQUBlEB.iEACE_QEHHEHIBINQ

AMPLITUDES

We restrict ourselves to the complete basis of type {I) solutions for two reasons. It  is
physically more satisfactory because it corresponds to a finite dimensional Tepresentation
of the angular-momentum algebra af the system, that is, for a fixed energy ¢ and for a given
value of the total angular momentum (j - ~T-e)(j - %; g + 1), where j = half-integer > - 1/2
we have j + 3/2 eigenstates of the angular-momentum projection on the local axis §; also for
simplicity, because all following results are analogous to the ones obtained if we have also
considered type (II) basis. Without loss of generality, in what follows we consider only the
case g = 0. We have the complete basis:

¢(+)(j,m,k3,L.€)

¥ay(Gom kg L.e) = el omik3z mifelt (4.1)
L¢(+}{j,m,k3,L,e)
where
m+1/2 . f7|E|_ 1
“il-lefsikg- 01 T e’ T Trga,b,enn sy
¢y Jm ks, Loe) = m-1/2 vZ 1 (4.2)
() 3 —= - le]+ _
Lizm1) (x2-1) 2 xe1) T | F(ab,c; 175)
Negative-energy modes
ot ¢[_)(j!m!k3|l‘nl‘:) R } .
w(_](j,m,k3,L,e} - e~imy -ikzz  ileft (4.3)
L¢(_)(j.m.k3.L,€J
where
m-1/2 2T
@) 02y 7 ey 20 ZRabieidsd)
¢(_J{j ,m,k3,L,e) = m+1/2 _ £|€|- l (514]
iL(-|e|vLky- Dy (xP1) 2 (xe1) ZE(a,b,c41; 175
In the above, j = half-integer > - % .
- l2sm<j {4.5)
and
a=m~j
b=m+3j -7 |Je|] +1 . (4.86)
=m+ 1/2

-
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For all cases

le{ = ¥Z (2j + 1) + J/(Zj « 10k (kg - %E L)? (4.7}
The lower bound m =-1/Z in (4.5) is not in contradiction with the regularity condition
{3.43) because
m-1/2 _ /Z|E|* 1
lim  (2m+ D(x% 1) 2 (x+1} 2% “Fla,b.m + 1/2; 33%) = finite
m+=1/2
for all x.

The positive energy (4.1) and negative-energy (4.3) set of solutions are related by
oy (kg by = = 1Ly Y2 (- kg, - L) - (4.8)
(+) 3 (-] 3 )

We now discuss the normalization of the complete set of modes [j,m.L,kS,e} defined in {(4.1)-
(4.7). Let us consider the local classical Dirac current

JA g Ay - eéﬁ)(x} ¥y (4.9)

The component j(O} = w+¢ of (4.9) is the local number density of neutrinos. As expected j[o)
transforms as the zeroth component of a Lorentz vector with respect to local Lorentz trans-

formations {3.3) and it is a scalar function with respect to coordinate transformations
(and/or point transformations) of the space-time. The local number j(OJ V-g d%x is thus a
scalar and integrated over a given volume of the manifold

[JTE 5000 44, (4.10)
yields a positive definite quantity which is coordinate invariant.

Neutrino amplitudes are thus normalized according to the integral (4.10), taken over the
whole GBdel manifold for reasons extensively discussed in Ref. (3), and for the complete set
(4.1} - (4.4) we have the 6 normalization

<¢{r)(j',m',ké,e')lw(s}(j,m,k3,5]>=(2w)3N26r56jj.Gmm.é(ks—ki) S(le|-le'}) {4.11)

.where r,s = +,- corresponding respectively to positive (4.,1) and negative (4.3) energy so-
lutions, and (20)

NZ o d<a> le]

T (4.12)
w (le| + Lky - vZ/2)
where
Zm-vZle |+3 . a2 . . \
car = 2MEEIS Gy (/20 1) 2 G emy (V2 e g me 1) (413
(vZ]e|-2j-1) (5+1/2)! (vVZle|-j-3/2)!
The factor (Zn)z N2 in the right-hand side of (4.11) can be interpreted as inversely pro-

portional to the local number density of states (j,m,k3.L), that is, the local number density
in the Fourier space associated to the complete basis of solutions (4.1)-{4.4). It is clear
from (4.12} that the local number density of states (jam,ks.L] dgpends strongly on the sign
of Lky. :

(0}

malization depends on the orientation of the field of tetrad frames e?A)(x], with an arbi-

Since we have used the local number density j to normalize the wave functions, the nor-

trariness due to local Lorentz transformations (3.2)/(3.3). The present orientation of the
tetrad frame in which (4.11) and (4.12) were calculated in nevertheless a preferred orienta-

tion in the sense that (3.11} is based on the matter flow of the model-actually the zeroth
vector of the tetrad frame is defined by the four-velocity field of matter e?o}=ag s and
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(4,11) and (4,12) are invariant under Lorentz transformations which preserve this condition,
that is, LR = Gg. The matter flow of the model singles out {4.11) and (4.12).

The Fourier space associated to the complete basis (4.1) - (4.4) is constructed as.follows.
The kernel of the transformation is defined by (21)

K{jomrkS;E;x) = K(+] (J ;mnksiiei;x) + K(_)(J 'm’kS![EI;x) . [4'14)
where
. B n B a : . i
K = diag( . . , exp (-im¢ + ik,z + ifelt 4.15
(+) Bl I I oy oXp (Fime s 3kgz s defn) (4.15)
and
Koy = diag(—%w , — B, —% — & ) exp (ime + ik.z - ile|t) (4.16)
(-] <a>1/2 <B>1/2 <u>1/2 <B>1/2 P 3 I I -
where
m—l/Z - lea|+ 1
a=@n+ -1 L ey 2 TEaEbe 5
m+l/2 _ /ZIE|_ 1
p=?-1 7 x+1) 7 TERabe o« 1; L (4.17)
and
<g> = J al(x)ydx , <g> = } 8% (x)dx = hlle (4.18)
1 1 A1/ 2 (T e|-§-1/2)

The parameters a, b and c are given in (4.6) and <a>» in (4.13). The Fourier transform of a
neutrino field y has the expression

POl = vpltomt kyet) = [/35 atx k(3 m kg0 900 (4.19)

where the integration is taken over the whole manifold.
For (4.14) we have the unitarity property

3 .5jj.5(k3-k3)5([e|-|e'|) {(4.20)

[/ri a*x k(G m ky,etix) KT(j.m,k3,a;x) = 2(2m)° 1. -

We remark that the first term K .y of the kernel (4.14) can be considered as projector - with
respect to the operation (4.19) - into positive-energy states since its action on negative-
energy states (4.3)/(4.4) results zero; analogously the second term K(_) in (4.14) is a
projector into negative-energy states since its action on positive-energy states (4.1)/(4.2}
gives zero, Because the inverse of a projector is not a one-to-one map, the inverse Fourier
transform is then defined separately for positive -~ and nepative-energy amplitudes, with
kernels K(+) and K[_) respectively, that is

o

dkde

J .
»:) =j§_1/2 m=§1/2 v K(i)(J»m,ks,S;XJqJF(!} (4-21)
g»{ (2m}

-1 .
F ¢F(J.m,k3,l€
for positive - and negative-energy states respectively, We have the unitary properties

a y & .
J [ dkgde §°(x-x") 4 (4.22)
gx0

i=f1/72 a=f1s TS K Oemkgee Ky Gomkgaeixy = ——
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2 J dkqde 4 .
B - J Ki_ (am kg o)k (5,mke,esxt) = ${xex) 4 (4.23)
j%-1/2 m==1/2 60 W {(-) 3 (-} 3 g

which actually imply FEl -l F=1, as expected.

The Fourier transform of a positive-energy amplitude (4.1)/(4.2) is the four-spinor

-i(Lkg-le|- 7B <ppl/?
0p(om kg, fe] ¢ = (2zm)? L<a>1/2

- iL(Lkg- |e] - BF) <p>1/2
1/2

'6mm,6jj.6&3'k£)6(|EI'IEIl) (4'24)

L4+ =

The local Lorentz group {3.2), (3.3} - with respect to which the spinor structure is defined-
induces on the Fourier space the group of transformations

$F{j,m,k3,g,:) = §' ;. Eéé;;; S(j,m,ks,s;j',m',ké,s')wF(j‘,m'.ké.e',i) {4.25)
where

S(jmksa;j'm‘kéa') = JJTE d4xK(i)(jmk35;x)5[x)KEi}(j'm'kge';x) (4.286)
The Fourier space described above is actually a mementum space for neutrinos. In fact, ex=

prossing a positive-energy state (4.1}, (4.2) as

@ j dk.de
Uy ks) = Ty adiagz [os Kl Uumikseix) vpimky.e )
(2x)

and using Dirac's equation YA ¥4 ¥ = 0 we obtain the transformed Dirac's equation
-in, vy, =0 (4.27)
A F *
where Ty is given by

1/2

. . - 7z
Iy = {le|,0, -2 [(J*lleifz 1E|'J-1/2)_ s kg - = 1) (4.28)
We have
A
Oy o7 = 0 {4.29)
as expected for a massless particle, where md = nAB M. The form of the component My (along

the local direction of the vorticity field) shows that the "leptonic charge” L behaves like
the coupling constant in the coupling of the spinor structure of neutrino to the vorticity
field. For a negative-energy solution (4.3)/(4.4)

= j dksds + ]
w(_)fL.ks] - j;_lfz ma_lfz EEE;S K[_)[jlm'kSIE;x) wthsmiks'E-_) (4'30)

we analogously obtain (4.27) where My is given now by

- 1/2
Iy = (-lel,0, 2]_(J‘+1/2}(f2 Isi-j—l/z}] tkg - g L) : (4.31)
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with "A l'[A = . The same results (4.27)-(4.31) are obtained if we have instead used the
infinite dimensional representation basis which was discussed in Section 3, the only dfierence
being that the parameters j and m are completely independent, with range -1/2<j«<«, -1/2<m<w .
We remark that n3 has the same sign in (4.28) and {4.31) due to our definition of (4.16)-in
fact, if in (4,16) we change ks + -k; and L + -L we have in (4.31) that gy +» - Mg without
altering other components. It fol.ows that the corresponding N, for negative-energy sdutions
has the opposite sign of Ty for the positive-energy solutions, a behaviour characteristic of
"plane-wave type” positive - and negative - energy amplitudes related through the property
{4.8). This fact is important when we consider symmetry transformations between particle and
antiparticle amplitudes.

We now calculate the component (along the local vorticity field o)) jgs) of the local four-
current

i = g YN yp = F g B T ovp) (.32

and we cobtain, using (4.24),

-1
553) - 4(2m)° — 23— <> - 6

|e+Ln 8540 80kg-ky) 8(lel-le"]) (4.33)
E|+ 3

mm" j

We now make an important remark about the normalization of solutions y(x) and yp.As a result
of the normalization integral (4.10), we see that is exactly the zeroth compenent 1, = lel
which appears as a factor in (4.12) and characterizes its behavior under the local Lorentz

transformations. We shall therefore normalize all solutions with the remaining factor in
(4.12),
re - A<a> H (4.34)

IJJ4 (el + LI4)

This corresponds to have (dropping §-factors)

vp vp = el . <pje> = el {4.35)
By using (4.35) or (4.34), the expression (4.33) of jés) results

i3 EmOeng)e e 8550 STk BClei-l="D) (4.36)
We use the expression (4.36) in the next section to discuss the microscopic assimetry of

neutrino emission in the presence of a local vorticity field.

in order to examine guestion connected to neutrino-antineutrinc symmetry of some processes,
we shall tzy to define amplitudes for particle and anti-particle states. To this end we
obtain transformations which can be interpreted as leading from particle te anti-particle
amplitudes, and which are actually symmetry transformations for the present neutrinos in the
sense that they preserve the Hilbert space of neutrines solutions generated by the basis
(4.1 - (4.4). These transformations can be reasonably understood as corresponding locally
to known symmetries of particle physics.

The use of tetrads is practically unavoidable to describe the interaction of fermions with
gravitation (22,12) and, in this context, the theory has two groups involved: the local
Lorentz rotation {3.2) of the tetrads and the isometry group of the manifold. Spinors are
defined with respect to the local Lorentz structure, in the sense that they provide a  basis
space for a spinoral representation of the local Lorentz group. On the other hand, these
spinors provide a basis space for a scalar representation of the isometry group of the ma-
nifold. For the present case of neutrinos, we are restricted to a subspace of spinor functions
which are eigenstates of ys. namely the Hilbert space of solutions generated by(4.1)-(4.4).
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In the definition of neutrino and anti-neutrino amplitudes, both groups are inveolved; for
instance the energy eigenmodes are related te the Killing vecter 3/5t of the isometry group,
while the charge conjugation operation must take into account the local spinor structure.Our
procedure here will be obtain consistent neutrinc-antineutrino symmetry transformations of
the Hilbert space of neutrino amplitudes generated by (4.1) - (4.4) and which then necessanly
takes inte account the two group structures present.

Starting from a negative-energy solution (4.3)/(4.4)}

Py (k5nld : . :
w(_)(ks,L) e~ imd -iksz e1!e[t

Lo (_y (kg,L)
we define the transformation
Vo (ke L) = 87157 k., (5.1)
(-) "3 (-1 =3 '

where S is a matrix of the algebra of Dirac matrices, which satisfies

T
A gl _ A

Sy -y (5.2)

In the present representation (14), (5.2} is satisfied by
syl y? (5.3)

where ~ denotes egquality up to a constant phase factor. An explicit calculation of (5.1)

gives
vl T Ol =g,y (kgoL) (5.4)
Transformation (5.1) has the following properties: (i} it is a symmetry transformation of

the Hilbert space of neutrino amplitudes, since it takes a negative-energy solution {4.3) to
a positive energy-solution (4.1}, and vice-versa; (ii) the 5 matrix (5.2) and (5.3) has the
character of a charge-conjugation operator on the amplitudes (4.1), (4.3) {in case & charged
particles it relates solutions with distinct signs of the charge); (iii) neutrinos amplitudes
related by (5.1) have opposite helicity L and momentum k; - the lecal momentum T (cf.(4.28),
{4.31)} change sign under (5.1). We note that (5.4) is precisely the symmetry (4.8) between
positive - and negative - emergy solutions. From the above properties we interpret (5.1) as
a charge-conjugation-parity (CP) transformation for neutrino amplitudes, and hence we  have
the independent positive-egnergy wave functions interpreted as

¢(*) [kS.L) = neutrino amplitude
(5.5}
¢(+}(-k3,-L)= corresponding antineutrino amplitude

The positive-energy amplitudes (5.5) are said CP related in the sense that the corresponding

negative-energy amplitude w(_)(ks,LH:¢ _)f'k3-'L)] of one is transformed into the other
w[+}(-ks,—l)ﬂw(+){k3,L]:| under (5.1). From the local CP invariance of neutrinc physics(only
negative helicity neutrinos exist) we take L = -1 for neutrinos which implies L = +1 for
anti-neutrinos (¢f. {5.5)). Neutrino and antineutrino amplitudes (5.5) have their respective
momentum I with oppesite sign.

We can now discuss the micrescopic asymmetry of neutrino emission along the direction de-
termined by the wvorticity vector field.

From the expressiocn (4.36) for the component of the local Fourier current JF aleng a, we
take the relevant factor
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and we distinguish the two cases

(1) |kg] > V272
for neutrinos (L = -1) we havz that }F is larger along the direction antiparallel to %
.than along the parallel direction; for antineutrines (L = +1)}, 3F is larger along the
direction parallel to 3.

(2) |k3| < V272
for neutrinos (L = -1), the component of }F along 3 is always negative [fF has only anti

parallel component along ﬁ}; for antineutrinos (L = +1).thecompunen,d‘fF along 5] is
always positive. The following diagram is illustrative (24):

Case |k4|

T antineutrinos antineutrines
+
3 S TSEN NP 2 ESURNSARIRE Y
. i f
H )
neutrinogs neutrinos
5% - oo i -

Case |k3| < /I/3

As for the local j(A)(x) = p(x) YAw(x). we calculate the component jﬁkx](that is, along §)
at the origin x = 1. In the normalization (4.35), we have

J[3) (x) = % [(lg' + LHS}Z BZ _ 0!.2‘ (5.7)

where R% is given by (4.34), and o and B have their expressicn in (4.17). We note that
j(A)[x) depends on the coordinate x = cosh Zr only. At the origin x = 1, we can see that for
a given j > 1/2 only the modes m = & 1/2 contribute to (5.7), namely for a given j > 1/2

2

L - LI

%(3) [x:]_]L = (iii 2_‘/2—|€] (5.3)
=-1/2 R“{m=~1/12)

(cf. ref, (23)) and

2-/7 |ef

[j(SJ [x=l]] _-16L (5.9)

m=+/2  Ri(me=+1/2)

The total local current aleng ﬁ(at the origin x = 1) for a given mode j > 1/2,

iPaan=- g [®6- )
m=-1/2,1/2 m
is then calculated to be
(vIlei-2j-1) (VZ]e|-25-1)

iPx-1 - —————F03)= e —— (~k3 + L VZ/2) (5.10)
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The same analysis and diagram for the asymmetry of the Fourier current {5.6) applies to
(5.10).,
A special case is the mode j = - 1/2 for shich
. vZ .
i b = 2 leleng + Lo [e])
j=m=-1/2

Finally we draw some interesting conclusions concerning the number density of neutrinec and
antineutrine states, CP vioclation and lepton assymetry,for the present problem. To this end
we note that the number density of states - which we denote by n(LkS) and is proportional to

lel-vZ(2; + 1) _,
n[Lks) u R -
k, - 4 L
3 pi

where R® is given by (4.34) - depends strongly on the sign of Lky (through [e] and Liy), for
|ks| of the order of +Z/Z. Consequently for a given value of (j,m,k;), such that [ksltfthe
order of YZ/2, we could have a number density of states different for L = -1 and L = +1,This

fact can be significative in the presence of CP-viclating interactions, as we shall discuss
now for the case of creation of neutrino-antineutrine pairs in the presence of a CP-vidating
perturbation, when a neutrine-antineutrino number asymmetry may possibly occur.

Having in mind the CP-symmetry (5.5) (cf. also remarks below (5.5}) and that RS =-k3+L/T/2

we can draw the diagram shown in Fig. 2 for the amplitudes {5.5) according to the sign of
Lk3-
L=-1 L L=+1 11
i
t {34,
CP
.
i &
k., = -|k .
by [k, Lk, = -{k.|
i - Q <k ., <0 3 3 /7
Exception 2 E R Exception 0<k3< T
Liy = [k, L, = [k,
L=-1 111 L=+1 iv

RV AN
3 “

! -
Lk, = fk3 Lk3=|k3| m

Constraint k3<—ﬁf’2 Constraint k3>/§;’2

FIG, 2 - Diagram for the amplitudes (5.5).
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In the diagram of currents in Fig. 1, the large components of neutrine and  antineutrino
currents corresponds to amplitudes I and TII and are CP related. The small components
correspond to CP-related amplitudes IIT and IV, which clearly shows that the asymmetric
emission of neutrinos is CP invariant.

In case of creation of neutrinc-antineutrine pairs in the present universe,we can disthguish
two possibilities:

1 - Neutrino-antineutrine pairs whose amplitudes are CP related, namely (uIGII) or(vIIIGIV],
according to the above diagram; for each case the corresponding current diagram is CP
invariant, and the number density of neutrino states is equal to the number density of
antineutrino states.

2 - Neutrino-antineutrino pairs whose amplitudes are not CP related, namely (UIGIv)or(vDEG[}
In both cases we note that Lk; has opposite signs for neutrino and antineutrino amplitu
des, which corresponds to a number density of states different for neutrinos and  anti-
neutrinos. For (VIGIV) or {UIIIGII) we have, respectively, the number densities o states
[n[—lksl),n(|k3l)) and (n{|k3|). n(-1k3|]). Nevertheless, if the c¢reation of pairs is
due to a CP-invariant perturbation both cases will be equally probable since
[uIGIv)<——£21——>(vIIIGII) and no net asymmetry in neutrino-antineutrino number is possible.
A net asymmetry (due to different density of states available for neutrinos and anti-
neutrinos) will appear if the pair production perturbation vielates CP. Indeed if pairs
{“IGIV) are produced, the pairs (“IIIGII) are then forbidden and a net asymmetry between
neutrino and antineutrino number will appear, proportional to the ratio
& = ;(k3)+2[_k3) (5.7)

3 3 3

for positive values of k;. The ratio (5.7) is significantly nonzero orly for (k.| of the

order of ¢Z/2. We also remark that the above discussion is independent of the spacetime
point considered, since in our analysis we have dealt with scalar quantities only.

6 -~ CONCLUSIONS

The main cenclusion of our investigation is that the presence of a vorticity field of matter
produces, via gravitation, microscopic asymmetries in neutrino physics. These results can
alsc be extended to massive spin-1/2 fermions and this will be the subject of a future
publication. We have proved these results in the context of the Einstein theory of gravitation
and for operational simplicity we have censidered GHdel universe as the gravitational back-
ground, because it is the simplest known solution of Einstein field equations which is
stationary and in which the matter centent has a non-null vorticity, The basic results fillow:

1 - The local dynamics of neutrinos is obtained from the Dirac equation in the given back-
ground.The spin of the neutrino precesses locally abeut the direction of the vorticity
field. The direction of the angular velocity vector is parallel to the vorticity field,
both for neutrino and antineutrino, and the absolute value of the angular velocity of
precession depends on the energy of the neutrinc/antineutrine. The Hamiltonian which
determines the local dynamics of neutrinos is defined with respect to the global timelike
Xilling vector 3/3t, and we have that the helicity L of neutrino (defined with respect
to the local Lorentz frames of the tetrads) is conserved.

Z - We solve Dirac equation by separation into invariant modes defined by the glebal Killing

vector fields of the spacetime, and we obtain a complete set of solutions of neutrinoe
amplitudes in the hyperbolic harmonic medes (j,m.k;,e,L]. These modes provide two
distinct representation bases for the algebra of the total angular momentum of the

system (neutrino coupled to gravitation), one finite dimensional and the other infinite
dimensional. For both cases the space of angular-momentum appears to be polarized along
the direction determined by the local vorticity field #. We construct the Fourier space
associated to these complete bases and the complete unitarity relations for the kernel
of the transformation are obtained.
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3 - From the symmetry properties of the Hilbert space of neutrino solutions and its

corresponding Fourier space we are able to define neutrino amplitudes, which are CP
related as expected from the laws of neutrino physics.

The Fourier current asscciated with the neutrino amplitude as well as the local neutrino
current calculated at the origin x = 1 (for a given j > 1/2, summed over all contributons
- 1/2 < m < j) are asymmetric aleng the direction determined by the vorticity field: the
component of neutrino current along the direction antiparalld to the vorticity field is
larger than the component along the opposite direction. Also the Fourier current
associated with the antineutrino amplitude as well as the local antineutrino current
calculated at the origin x = ! {summed over all contributions - 1/2 < m < j) are asym-
metric, since the component along the direction antiparallel to the vorticity vector is
smaller than the component along the direction parallel to the vorticity vector.Tlerebre
at the microscopic level, neutrinos are preferentially emitted antiparallel to the local
vorticity field; as well, antineutrinos are preferentially emitted parallel -to the local
vorticity field. This result is CP invariant. In case of production of pairs under CP
violation, @& net number asymmetry appears between neutrinos and antineutrinos, which is
significantly nonzero for ki of the order of the vorticity value vZ/2.
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14- 57 are the constant Dirac matrices; we use a representation such that vy =y y y ., with
(YU}Z = - (YK]Z =1, K=1, 2, 3 and YS = - iYO¥1Y213. Explicitly

10 jo oK
a K _ |
¥ = Y o= | ‘
K !
0 -1 {-o™ 0}
We use Pauli matrices in the represcntation
0 1 {U i n n}
ol = , ot = | , oF = |
1 0 [-i 0 [n -1J
15- Equations of the type
z ., d? d K MM
{x“-1) +2xsM M) FE 4 (Ke Sy - ) v o= 0
dx x"-1
. . o+l ALY LR O
can be seolved by the standard substitutions v = {;:T) (x"-1}"(x+11". where A, B and c

are constants to be determined.
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Angular momentum space has thus a preferred dirvection defined locally by the vorticity
vector 1. This is characterized by the fact that the projection of I alongﬁjj Hermitian
while any of its components along a direction orthogonal to @ is not Hermitian. The
allowed rotations in this space maintain the directioen % invariant.
The stronger condition (3.42) is assumed to garantee that J[l] and J(Z) are antihermitian
in the case o = 0. Milder conditions as *ig w+w = 0 would produce nothing new.
This analysis follows directly from the asymptotic formula

lim F(a,b,c,z) = (=1)3 TEJTT“T;{C}T(E::) 2% 4 (yb )T (a-b) ,-b

— TlaJT(c-b}

We temark that even for the case j = m = -1/2, N2 is a nonzero finite number. We note
that .

el? - (kg + LD« a0 + /2307 [e] -§-1/2)

In the remaining of this section we take for simplicity w = 1,

P.A,M.Dirac in Recent Developments in General Relativity (Pergamon, New York, 1962], pp.
191-200,

We use the result %iﬂ {cF{a,b,c;3)} = ab % F(a+1,b+1,2:X).

The preferential emission of neutrine (antineutrino) aleng the direction antiparallel
{parallel) to the local vorticity field & has a macroscopic analog in the case of neu-
trino evaporation by a rotating black hole. A basic difference however lies in the
local character of the vorticity field of matter flow as well in the local mterpretation
of L as the helicity of neutrino spinor fields, for the present case, in contrast to the
asymptotic meaning of rotation and other quantities in the space-time of a rotating
black hole. Cf.A.Vilenkin, Phys. Rev, Lett., 41, 1575 (1978); Phys.Rev. D20, 1807 (1979}
and D,A,Leahy and W.G.Unruh, Phys.Rev.D1%9, 3509 (1979).



