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Rotators with Long-Range Interactions:
Connection with the Mean-Field Approximation
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We analyze the equilibrium properties of a chain of ferromagnetically coupled rotators which interact
through a force that decays as r2a where r is the interparticle distance and a $ 0. By integrating
the equations of motion we obtain the microcanonical time averages of both the magnetization and the
kinetic energy. We detect three different regimes depending on whether a belongs to the intervals �0, 1�,
�1, 2�, or �2, `�. For 0 , a , 1, the microcanonical averages agree, after a scaling, with those obtained
in the canonical ensemble for the mean-field case �a � 0�. This correspondence offers a mathematically
tractable way of dealing with systems governed by slowly decaying long-range interactions.
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One of the most important questions in statistical me-
chanics refers to the connection between dynamics and
thermodynamics: To what extent does a suitable ensem-
ble average allow one to predict the time average of a
physical observable performed by our instruments in the
laboratory? Or, in other words, what are the mechanical
specifications of those systems to which the results of
statistical physics can be applied? Within this context,
while ergodicity and mixing have been analyzed inten-
sively in the literature, there is another important point
which has not received the same degree of attention, that
is, the possibility of defining a thermodynamically suit-
able energy function. In fact, for systems governed by
sufficiently long-range interactions decaying as r2a with
the interparticle distance r , there results a nonextensive
Hamiltonian; i.e., the energy per particle diverges in the
thermodynamic limit N ! ` [1,2]. Gravitational (a �
1, d � 3) and monopole-dipole (a � 2, d � 3) inter-
actions are only two well known instances among many
others. Furthermore, such forces are particularly interest-
ing since they can lead to equilibrium behaviors different
from those observed in short-range systems and even give
place to phase transitions otherwise absent, even in the
d � 1 case.

Our aim here is to investigate how to deal with sys-
tems governed by long-range interactions by analyzing a
simple but rich prototype with adjustable a. The main
goal of this Letter is to show that the mean-field limit
(a � 0) is able to describe the thermodynamics in the
whole range 0 , a , 1. The model consists in a one-
dimensional chain of N interacting rotators with periodic
boundary conditions. Each rotator moves on the unit circle,
and therefore it is fully described by the angle 2p , ui #

p and its conjugate momentum pi (with i � 1, . . . , N).
The dynamics of the chain is governed by the following
Hamiltonian:
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where, without loss of generality, we have chosen unitary
moments of inertia for all the particles. Here rij measures
the minimal distance between rotators i and j along the
chain. The Hamiltonian (1) describes a classical inertial
XY ferromagnet. K and U denote the kinetic and potential
energies, respectively. The equations of motion ruling this
dynamical system are

�ui � pi , (2)

�pi � 2
X
jfii

sin�ui 2 uj��ra
ij . (3)

We associate with each particle a spin vector

mi � �cosui , sinui� (4)

and define the total magnetization of the system as

M �
1
N

X
i

mi . (5)

The long-time behavior of M determines whether the sys-
tem orders (M fi 0) or not (M � 0).

We also introduce a time dependent temperature T �t� as
T �t� � �2�N� �K� �t�, where �· · ·� denotes a time average
performed over the time interval �0, t�. By calculating the
long-time behavior of T as a function of the total energy
of the system one gets the caloric curve T vs E�N from
which the specific heat function is extracted.

Note that the a ! ` limit yields the first-neighbor
case while a � 0 represents the mean-field version. The
later case has a correspondence with the model known
in the literature as Hamiltonian mean-field (HMF) XY ,
provided the potential energy (thus the strength of the
interactions) is scaled by the number of particles N , i.e.,
© 2000 The American Physical Society
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in the HMF model U �
1

2N

P
ifij�1 2 cos�ui 2 uj��.

The HMF model has received special attention during the
last years, and very interesting results have been obtained
for both its equilibrium and nonequilibrium properties
[3–5]. This model can be solved analytically within
the canonical ensemble formalism [3]. It is found that
there is a critical specific energy at which the system
suffers a phase transition separating a paramagnetic
high energy phase (with M � 0) from a ferromag-
netic low energy one (with M fi 0). More precisely,
E�N � T�2 1 �1 2 M2��2, with jMj � yT where y is
the value maximizing 2y2T�2 1 lnI0� y�, I0 being the
modified Bessel function of order 0. For E�N . 3�4
(T . 1�2) the only solution is y � 0, while below the
critical energy the null solution becomes unstable and
a new stable solution appears, giving place to a second
order phase transition. On the opposite limit of first-
neighbor interactions (a ! `), when U �

P
i�1 2

cos�ui11 2 ui��, one does not observe an order-disorder
thermodynamical transition [6]. In this case,
E�N � T�2 1 1 2 I1�1�T ��I0�1�T�, where In stands
for the modified Bessel function of order n. The dynamics
generated by the Hamiltonian (1) has been analyzed
before [7]. In the limit N ! ` and for energies above a
critical value, the maximal Lyapunov exponent was shown
to vanish for 0 # a , 1, while it tends to a finite value
otherwise.

For arbitrary values of a we have integrated numerically
the set of equations of motion (2) and (3) using a fourth
order symplectic method [8] with a fixed time step selected
so as to keep the energy constant within an error DE�E of
order 1024. Initial configurations (t � 0) were chosen as
follows: all the angles were set to zero and the momenta
were chosen at random from the uniform distribution with
zero mean value. Next, all the momenta were scaled in
order to attain the desired total energy E. We varied the
size of the systems from N � 100 to 1600 in order to
analyze finite size effects [9]. Once a transient elapsed
(that depends both on the size of the system and on the
total energy E), we computed the time averages of both
the magnetization and the kinetic energy looking for their
asymptotic behavior.

We start considering the region 0 # a , 1. Systems
characterized by values of a within that interval do not
have a well defined Hamiltonian in the sense that, in the
thermodynamics limit N ! `, the potential energy di-
verges. One of the goals of this work is to establish
precisely a connection between our microcanonical tem-
poral averages obtained for a inside that range and those
obtained theoretically by averaging in the canonical en-
semble the HMF model [3].

Figure 1a displays the modulus of the magnetization
jMj as a function of the energy per particle E�N
for a � 0.5 and different system sizes. We observe
that the system undergoes a phase transition from a
ferromagnetic low energy phase with M fi 0 to a
paramagnetic high energy phase where M � 0. As
expected, the critical specific energy diverges as N
increases, due to the lack of extensivity of the system.
In Fig. 1b we present the same results but now with the
specific energy scaled by a factor Ñ that depends both on
the system size N and on a. To understand the origin of
this scaling, let us stress that the lack of extensivity in the
range 0 # a # 1 emerges as a consequence of the di-
vergence of the specific potential energy upper bound in
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FIG. 1. (a) Modulus of the magnetization, jMj, as a func-
tion of the specific energy E�N ; (b) jMj as a function of
the scaled specific energy E��NÑ�; (c) scaled temperature
T�Ñ as a function of E��NÑ�. The symbols correspond to
numerical simulations in the microcanonical ensemble for
a � 0.5 and different system sizes indicated on the figure.
Each symbol corresponds to an average of different initial
conditions (typically 10). The solid lines correspond to
the theoretical equilibrium predictions for the HMF model
(for which Ñ � 1, since the HMF Hamiltonian is already
N scaled).
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(1). Ñ is nothing else than twice the value of this upper
bound:

Ñ � 2
N�2X
r�1

1
ra

	 2
Z N�2

1�2
dr r2a � 2a N12a 2 1

1 2 a
, (6)

For N ! `, Ñ behaves as

Ñ�a� 


8><
>:

2a 1
12a N12a for 0 # a , 1 ,

2 lnN for a � 1 ,
Q�a� 1

a21 for a . 1 ,
(7)

where Q�a� is a function of a which, for a ! ` goes
to 2�a 2 1�. Note that all the curves for different N
collapse into a unique one, despite small discrepancies
around the critical value. Similar Ñ-scaling collapse was
already observed for magnetic systems [10,11] and also
for systems governed by interactions of the Lennard-
Jones type [12]. In all these cases, although the a-de-
pendent prefactor in (7) is model dependent, the behavior
of Ñ with N is invariant.

Figure 1c plots T�Ñ vs the scaled specific energy
E��NÑ� (caloric curve) also for a � 0.5 and the same
system sizes considered in Figs. 1a and 1b. Here again
the Ñ scaling leads to data collapse. It is worth stressing
here that around the critical energy this plot depends
strongly on the equilibration transient, the size of the
system, and the initial configuration adopted. Our results
within this parameter range seem to indicate the existence
of a first order phase transition, with the high energy
phase coexisting with the ordered one. An analogous
behavior, already reported for the HMF model [4], where
the transition is second order, was believed to be a purely
microcanonical result reflecting the existence of long liv-
ing quasistationary nonequilibrium states whose lifetimes
increase with N . This also seems to be the case for any
0 # a , 1 since the discrepancy around the transition
for fixed energy and fixed size is attenuated by averaging
over larger time intervals.
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FIG. 2. jMj as a function of E��NÑ�. The symbols corre-
spond to numerical simulations in the microcanonical ensemble
for a � 0.25, 0.5, and 0.75, all for N � 400. The solid line
corresponds to the theoretical results for the HMF model.
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Figure 2 exhibits jMj vs E��NÑ� for a � 0.25, 0.5,
and 0.75, all for N � 400. Observe that the curves agree
with a unique one. The same collapse is also detected
for the caloric curve (not shown). Let us recall the main
motivation of this Letter, namely, the possible relation be-
tween statistical and temporal averages for systems for
which one cannot a priori define an extensive energy, such
as the case we are considering now. In Fig. 2 we have
also included the plot (solid line) of the theoretical pre-
dictions of the equilibrium values obtained, by means of
the canonical ensemble formalism, in the HMF version
(a � 0 with N-scaled potential energy) [3]. What we
now observe is that not only different size and different
a curves, with 0 # a , 1, collapse into a unique one,
but they collapse precisely to the mathematically tractable
extensive mean-field limit. A similar collapse had al-
ready been found for the Ising ferromagnet submitted to
a Monte Carlo process [10] but this is, as much as we
know, the first time this effect can be confirmed in a con-
servative model with deterministic dynamics. Since slowly
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FIG. 3. (a) jMj as a function of E��NÑ�; (b) scaled tempera-
ture T�Ñ as a function of E��NÑ�. The symbols correspond
to numerical simulations in the microcanonical ensemble for
a � 1.5 and different system sizes. For comparison, the dotted
line corresponds to the theoretical equilibrium predictions of the
HMF model.
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FIG. 4. Scaled temperature T�Ñ as a function of E��NÑ�.
The symbols correspond to numerical simulations in the micro-
canonical ensemble for a � 2.5 (gray), 5.0 (white), and differ-
ent system sizes indicated on the figure. The dashed and solid
lines correspond to the theoretical results for the HMF (Ñ � 1)
and the a ! ` (Ñ � 2) limits, respectively.

decaying long-range interacting systems are ubiquitous in
nature, our results, if valid for all those systems such that
a , d, reveal a simple way of calculating quantities at the
equilibrium.

Next we briefly describe what happens for 1 , a , 2.
There exists still an order-disorder transition, as can be
observed in Figs. 3a and 3b for the particular case a �
1.5, but with a sensitive dependence on the value of a.
Contrary to the previous case where the critical energy
(above which the magnetization falls down to zero as
N increases) remains independent on a although slightly
smaller than the theoretical prediction, here as the value of
a approaches 2, the critical energy decreases until a finite
value which can be nonzero [13].

Finally, we analyze the region a . 2. Here, as
expected, the system behaves similarly as in the first-
neighbor limit; i.e., it never does order since for any
finite energy the magnetization goes down to zero as
N ! `. In Fig. 4 we plot T�Ñ vs E��NÑ� obtained
numerically (symbols) for a � 2.5 and 5.0, together with
the theoretical values for both the limit a ! ` [6] (solid
line) and the HMF model [3] (dashed line). We see how
the numerical results approach those of the a ! ` limit.

To summarize, we have studied the equilibrium behav-
ior of a one-dimensional conservative system of interact-
ing particles as a function of the range of the interactions
a. By integrating numerically the equations of motion
we have found three different classes of systems. For
0 # a , 1 the systems undergo a second order phase
transition, and the measured quantities (e.g., the critical
energy) when suitably scaled do not depend on the value
of a. For 1 , a , 2 the systems undergo also a second
order phase transition but, unlike the previous case, the
critical energy and the magnetization curve depend sensi-
tively on the range of the interactions a. Finally, for a . 2
the systems adopt the first-neighbor behavior where there
is no order at finite temperature for N ! `.

It is also worth noting that the Ñ scaling performed over
the results produced by Hamiltonian (1) leads to the same
results as those produced by an artificial “extensive” Ham-
iltonian constructed with Ñ-scaled potential energies gen-
eralizing the HMF approximation. For a correspondence
between both treatments when looking at dynamical as-
pects, time should be Ñ1�2 scaled.

Probably the nontrivial data collapse here reported for
0 # a , 1 can be extended to 0 # a , d for an arbi-
trary dimension d, being [from the generalization of (6)
to d dimensions] Ñ 
 1

12a�d �N12a�d 2 1�. If true, our
findings reveal a simple way of calculating macroscopic
quantities at the equilibrium when long-range interactions
are involved.
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