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We discuss the applications of Nuclear Magnetic Resonance (NMR) to quantum information processing, focus-
ing on the use of quadrupole nuclei for quantum computing. Various examples of experimental implementation
of logic gates are given and compared to calculated NMR spectra and their respective density matrices. The
technique of Quantum State Tomographyfor quadrupole nuclei is briefly described, and examples of measured
density matrices in a two-qubit I = 3/2 spin system are shown. Experimental results of density matrices rep-
resenting pseudo-Bell states are given, and an analysis of the entropy of theses states is made. Considering an
NMR experiment as a depolarization quantum channel we calculate the entanglement fidelity and discuss the
criteria for entanglement in liquid state NMR quantum information. A brief discussion on the perspectives for
NMR quantum computing is presented at the end.

I. INTRODUCTION

Pulsed Nuclear Magnetic Resonance (NMR) has a very
long history of success in science and technology. The tech-
nique has been broadly used in Chemistry, Biology, Physics
and Medicine [1–4] and, more recently, it has found a new ex-
citing application: quantum information processing [5]. Since
the discovery of the so-called pseudo-pure statesby Gershen-
feld and Chuang in 1997 [6] and Cory et al. [7], there has
been a rapidly growing interest in NMR quantum computing,
and virtually all quantum logic gates and algorithms have been
demonstrated through NMR [8–10]. Very recent experimen-
tal advances in NMR promise to bring further interest into this
technique for quantum information processing [11, 12].

Quantum computation, as much the same as classical com-
putation, is built upon a finite set of quantum logic gates [5],
and any technique aimed to implement quantum algorithms
must be able to implement this universal set of operations.
However, such ability seems to be a necessary but not suf-
ficient condition to quantum computation. Indeed, although
NMR is recognized to correctly produce the unitary transfor-
mations which implement the universal set of quantum logic
gates, Braunstein et al. [13, 14] pointed out that this is no
guarantee that the expected effect will occur in the system.
Here the concern is entanglement.

II. ENTANGLEMENT

Consider a two-partite quantum system, with nuclear spins
IA = IB = 1/2, in a spin singlet state [15]:

|ψ〉=
1√
2
(|+1/2〉A⊗|−1/2〉B−|−1/2〉A⊗|+1/2〉B) (1)

This state does not depend on the relative distance between
the spins and, quantum mechanics tells us that, as long as the

system remains isolated from the environment, the state will
remain unchanged. States like the above one are called entan-
gled, and cannot be written as a tensor product of states of the
individual components. In other words, there exist no single-
particle states |φ〉A and |η〉B such as that |ψ〉 could be written
in the form:

|ψ〉 = |φ〉A⊗|η〉B (2)

In fact, it is a simple matter to show that, whereas the com-
bined state is a pure state, each component is in a maximally
mixed state [5].

States like (1) are pure entangled, and like (2) are separa-
ble. In the language of density matrices, strongly separable
states are those ones which can be written as ρ = ρA ⊗ ρB,
and weaklyseparable those ones for which ρ = ∑i piρA,i ⊗ρB,i
where pi are probabilities for the occurrence of the product
state “i”. Density matrices which cannot be written in either
form are said to be entangled. It is not a simple matter to
establish a general representation of entangled states, and for
this reason it is important to have relatively simple criteria to
characterize the degree of entanglement in a quantum system.

It is important to mention that the usual physical interpre-
tation given to entangled states has been questioned by some
authors. For instance, in Ref. [16] it is stated that: “Some
authors would like to draw far-reaching philosophical conclu-
sions [...] ‘as quantum mechanics violates realism or objec-
tive existence of phenomena’, or ‘measurement of one sub-
system influences the result of the measurement of another
distant subsystem which interacted in the past with the first
one’. We think that these deep conclusions are premature, and
it is useful to investigate explicitly many models”.

In spite of philosophical discussions about it, entanglement
is possibly the main natural resource for quantum computation
[5], and it has been reported in an impressive variety of NMR
quantum computing experiments (for instance, [17–19]). It
is present in superdense coding, in quantum teleportation, in
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quantum error correction protocols and in exponentially fast
quantum algorithms [5]. For two qubits, there are four possi-
ble entangled states, the so-called Bell states:

|Ψ±〉 =
|00〉± |11〉√

2

|Φ±〉 =
|01〉± |10〉√

2
(3)

Such states can easily be produced by NMR through a sim-
ple quantum circuit containig only two gates (the so-called
Hadamard and CNOT gates [5]), as shown in section V of the
present paper. For that, the two qubits must be first prepared
in the initial state |00〉 and then pass through the circuit. How-
ever, although bulk NMR can implement the quantum circuit
for entanglement, in its present stage of development, it can-
not produce pure states such as |00〉, but rather pseudo-pure
stateswith the form:

ρε = (1− ε)
I
4

+ ε|00〉〈00| (4)

where ε ∼= µH/kBT ≈ 10−5 for room temperature NMR, and
I the 4× 4 identity matrix. Since the NMR observables are
traceless quantities [20], only the second term on the right
side of the above equation contribute to the detected signal.
Therefore, NMR is capable of detecting signals coming from

nuclei in the samequantum state over a maximum entropy
background!

Following this reasoning, an entangled NMR state (for in-
stance the cat state) can be created applying a set of unitary
transformations to Eq. (2). Such state is represented by a den-
sity matrix of the form:

ρε = (1− ε)
I
4

+ ε|Ψ+〉〈Ψ+| (5)

Brausntein and co-workers [13] established a lower bound for
ε, below which ρε is always separable. Based on their results,
the authors concluded that no entanglement phenomenon has
ever taken place in NMR experiments, and the experimental
results reported to date could be interpreted in terms of classi-
cal correlations between spins.

In order to illustrate this point, consider the following ex-
ample of entangled NMR pseudopure state:

ρε =
1− ε

4




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


+ ε




0.5 0 0 0.5
0 0 0 0
0 0 0 0

0.5 0 0 0.5


 (6)

and let ε = 2×10−5. Note that in this example ρ1 (ρε = (1−
ε) I

4 + ερ1) is a pure cat state. Let us apply the Peres criterium
[21] to show that such a matrix is separable. Expanding ρε in
the basis of density matrix {Pi1 ⊗Pi2}, defined as,

P1 =
(

0.5 0
0 0.5

)
; P2 =

(
0.5 −0.5i
0.5i 0.5

)
; P3 =

(
0.5 0.5
0.5 0.5

)
; P4 =

(
1 0
0 0

)
(7)

and after partial transposing [21], one obtains the following
eigenvalues for the resulting matrix: λ 1 = 0.249985,λ2 =
λ3 = λ4 = 0.250005. Since all λ’s are non-negative, accord-
ing to Peres criterium, ρε is separable, even in this example
where ρ1 is a pure entangled state. Later on this paper we
will argue that the analysis of Braunstein et. al. [13] was in-
complete, besides showing that their established bounds for
separability were not generally correct. Before that, we will
also exemplify a number of quantum gates and circuit imple-
mentation through numerical examples and experimental re-
sults obtained in a two-qubit system, namely 23Na nulcei in a
lyotropic liquid crystal, and conclude with a brief discussion
about the perspectives for NMR quantum computing.

III. QUADRUPOLAR VS SPIN-1/2 NUCLEI

The majority of NMR quantum computing experiments
have been performed using spin 1/2 nuclei “(In this paper we
will be concerned only to two-qubits systems.)”, such as 1H

and 13C. In these systems, each qubit is identified with a nu-
clear spin. For instance, the chloroform molecule (CHCl3) has
two qubits, one from the carbon and the other from hidrogen
nuclei. Such a system evolves under the effective hamiltonian
[20]:

He f f

�
=−(ω−ωC)IC

z −(ω−ωH)IH
z +2πJICz IH

z −ωC
1 IC

x −ωH
1 IH

x

(8)
where the symbols have their usual meaning [20]. The evolu-
tion is described through the unitary transformation:

|ψ(t)〉 = exp

[
−i

He f f

�
t

]
|ψ(0)〉 (9)

A specific resonance can be selected by tuning the excitation
field frequency (radiofrequency, RF) ω to ωC or ωH . The con-
trol of the amplitude, ω1, duration and phases (x,y,−x,−y) of
the radiofrequency pulses allow any quantum logic gate to be
implemented [5, 22, 23].
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An alternative NMR two-qubit system is a quadrupole nu-
cleus with I = 3/2. The effective hamiltonian for such a sys-
tem is simpler than the previous one:

He f f

�
= −(ω−ω0)Iz−ω1Ix +ωQ[3I 2

z − I2] (10)

Some main differences between the two systems are:
1. The number of qubits per nucleus, N, is bigger in quadru-

pole systems;
2. Quadrupolar splittings are usually many orders of mag-

nitude larger than J-couplings and therefore spectral reso-
lution is better (typically, ωQ/2π≈ 10− 100 kHz, whereas
2πJ/� ≈ 10−300 Hz);

3. The free evolution of quadrupole spins goes under the
propagator exp(−3iωQtI2

z ), whereas in the case of spins 1/2
it goes as exp(−i2πJtI1zI2z/�);

4. Phase control of individual states in a superposition is
not as straightforward for quadrupole nuclei as for spin 1/2
systems;

5. Quadrupole relaxation is usually much faster than the
spin 1/2 counterpart.

In the remaining of this paper we will be concerned only to
quadrupole two-qubit systems.

IV. QUANTUM STATE TOMOGRAPHY

NMR states can be properly described using the formal-
ism of density matrices, ρ [20]. For time-independent hamil-
tonians, under a unitary transformation, U , a density matrix
evolves according to [20]:

ρ(t) = U(t)ρ(0)U†(t) (11)

From ρ(t), the NMR observables M± = Mx± iMy can be ob-
tained at any instant of time from [20]:

M±(t) = �γnTr[ρ(t)(Ix± iIy)] (12)

The Fourier Transform of the signal M±(t) yields the NMR
spectrum, which in the case of a I = 3/2 system is composed
by three lines with amplitudes A1,A2, and A3, correspond-
ing to the spin transitions +3/2 → +1/2, +1/2 →−1/2 and
−1/2 → −3/2 (Fig. 1). In order to fully characterize the
quantum state, the complete density matrix is necessary, but
the trace operation in the above expression transforms an ob-
ject with 16 complex entries (the density matrix of a I = 3/2
spin) into a single number. Obviously information is lost in
this process, but fortunately there is a way out. The technique
to rebuilt ρ from measured NMR signals is called Quantum
State Tomographyand was suggested by Vogel and Risken
[24], for spin 1/2 systems. For quadrupolar spins, the tech-
nique was first reported by Bonk et al. [25]. The deviation
density matrix (labeled here as ρ) can de considered to have
the general form “( Since NMR is not sensitive to the unity

FIG. 1: (a) Nuclear Zeeman levels scheme and logical labeling for a
I = 3/2 spin. (b) Equilibrium NMR spectrum of 23Na in a lyotropic
liquid crystal.

matrix of pseudo-pure states, Eq. (2), the matrix (13) must be
interpreted as the deviation matrixof pseudo-pure states.)”

ρ =




a xa + iya xb + iyb xc + iyc
xa− iya b xd + iyd xe+ iye
xb− iyb xd − iyd c xf + iy f
xc− iyc xe− iye xf − iy f d


 (13)

The method described in [25] is based on the fact that the
NMR spectra amplitudes are related only to the diagonalele-
ments of ρ:

A1 =
√

3(e11e12a−e12e22b−e23e13c−e13e14d)

A2 = 2(e13e12a+e22e23b−e23e22c−e13e12d)

A3 =
√

3(e13e14a+e13e23b+e12e22c−e11e12d) (14)

where ei j are the elements of the matrix which represent the
read-out pulse [25]. The other elements are obtained applying
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FIG. 2: Escheme representing the relative population fo the energy
levels, their experimental NMR spectra and respective tomographed
density matrices, for (a) the steps for the creation of a pseudo pure
state |01〉 and (b) the four computational base states of 23Na.

pulse sequences which bring them into the main diagonal of
ρ, and repeating the procedure for measuring the new diago-
nal elements a′,b′,c′ and d′ from the above equation. Fig. 2
shows an example of the procedure applied to the four com-
putational base states, along with the respective NMR spectra
and a scheme of the energy levels and labelling. It is important
to notice that the imaginary part of ρ is negligible, and also
that the amplitudes of the diagonal elements are in the correct
proportions of the spins state and the levels populations.

The 23Na NMR experiments described in this paper were
performed using a 9.4 T - VARIAN INOVA spectrometer and
a home-built single-resonance probe making use of a lyotropic
liquid crystal system. Gaussian shaped RF pulses with typical
duration of 0.5 ms were used to perform selective saturation
(π/2) and inversion (π) of populations. A non-selective hard
π/20 pulse 1.5 µs long was applied in order to read the popu-
lation differences for the three pairs of neighbor levels. Exper-
iments were performed with a recycle delay of 500 ms. The
23Na NMR spectra were obtained averaging the free induction
decay (FID) signal using the standard CYCLOPS scheme.

More information about the sample preparation and experi-
mental procedures can be found in references [1], [2], [25]
and [26].

V. NMR QUANTUM LOGIC GATES

In what follows we will exemplify two of the most im-
portant quantum logic gates: the controlled-not (CNOT) and
Hadamard (H) gates. CNOT (CNOTA indicates that the con-
trol qubit is the first one, whereas CNOTB indicates that the
gate is controled by the second qubit) is a two-qubit gate,
whereas Hadarmad acts on a single qubit. Their actions are
specified by (“Here, the first qubit is the controlqubit and the
second the targetqubit.”):

CNOTA|00〉= |00〉

CNOTA|01〉= |01〉

CNOTA|10〉= |11〉 (15)

CNOTA|11〉= |10〉

and

H|0〉=
|0〉+ |1〉√

2

H|1〉=
|0〉− |1〉√

2
(16)

It is important to observe that, besides creating a uniform su-
perposition of the two eigenstates of a qubit, the Hadamard
gate flips the relative phasebetween the sates. This property
makes Hadamard a self-inverse gate:

H2|0〉 = |0〉 (17)

The combination of Hadamard (applied to the second qubit)
and CNOT is a quantum circuit which, if applied to the initial
state |00〉, creates entanglement:

CNOTB ·HB|00〉=
|00〉+ |11〉√

2
(18)

In the NMR of a I = 3/2 quadrupole nucleus, these gates
are generated by the following pulse sequences (“Notation:
(θ)ϕ

i j represents a radiofrequency pulse applied to the transi-
tion i → j , with phase ϕ, and which rotates the state by the
nutation angleθ. The gates subscript “A” refers to the first
qubit of the pair: |AB〉.”) (time runs from left to right):
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FIG. 3: Experimental NMR spectra and respective tomographed
density matrices, for (a) before and after the operation HB |00〉 =

1√
2
[|00〉+ |01〉] (Hadamard gate applied to the second qubit), (b)

CNOTB |01〉= |11〉 (Controled NOT - control is on the second qubit)
and (c) CNOTB ·HB |00〉 = 1√

2
[|00〉+ |11〉].

CNOTB = (π)y
12 − (π)y

23 − (π)x
12

HB = (π/2)y
01 − (π)x

01 (19)

The density matrices and corresponding NMR spectra,
obtained from the experiments, are illustrated in Fig. 3.
There, the initial and final states after the application of the
Hadamard and CNOT logic gates, as explained in the figure.
It is important to notice that the same NMR spectrum corre-
sponds to different density matrices, as may be seen on Fig. 4.
This exemplifies the reason why quantum state tomography
must be done if one wishes to fully characterize the quantum
state.

Figure 5 shows the evolution of the Bloch vectors of the two
qubits under the action of the Hadamard gate, obtained from
the relation [5]

FIG. 4: Experimental NMR spectra and respective tomographed den-
sity matrices, for the four bell states, as indicated on the figure.

ρ =
I+ r(t) ·σ

2
(20)

where σ is a vector whose components are the Pauli matrices.
As can be seen from the figure, the first qubit (a) does not vary
as second one (b) evolves as predicted theorectically (the full
line).

One important issue of NMR quantum computing which
must be addressed is the relaxation. The Hamiltonian, given
in equation (10), is assumed to be static, but fluctuations in
time occur in both, magnetic and electric contributions. They
lead to relaxation, and then to loss of coherence. Therefore,
it is important to investigate relaxation in the context of NMR
quantum computing. References [26] and [27] reports a spin-
lattice relaxation study of various NMR quantum computing
coherent states.

VI. NMR ENTANGLEMENT

Entanglement is the main ingredient of quantum computa-
tion. But unfortunetely entanglement is very difficult to be
characterized by testing its non-local properties. Measure-
ments in NMR are not projective, but ensemble averages.
Long et al. [28] have proposed that an NMR state like
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FIG. 5: The trajectory of the Bloch vector, for each individual qubit,
during the evolution of the spin 3/2 quantum system, under the appli-
cation of Hadamard gate twice. The points are experimental results,
the dotted line is an interpolation of the data and the continuous line
is a numerical simulation. Numbers indicate the end of each step (RF
pulse). Each point in the figure correspond to tomographed density
matrices.

ρε = (1− ε)
I
4

+
ε
4
(|00〉+ |11〉)(〈00|+ 〈11|) (21)

must be interpreted as an state in which a fraction ε of the
qubits pairs are entangled in the state (|00〉+ |11〉)/√2. Since
NMR is sensitive only to the deviation density matrix (“ Room
temperature NMR density matrices can always be written in
the form: ρε = (1− ε)I/d+ (ε/d)ρ1, where d is the dimen-
sion of the Hilbert space, and ρ1 is the so-called deviation
density matrix.”), the detected NMR state would, according to
the authors, truly reflect entanglement.

On another hand, Braunstein et. al. [13] have established
bounds for ρε to be entangled. The general problem is to es-
tablish the conditions for which arbitrary density matrices of
N qubits with the form

ρε =
1

2N (1− ε)I + ερ1 (22)

can be separable. Here ρ1 represents an arbitrary density ma-
trix.

Density matrices can be expanded in a basis of Pauli matri-
ces [13]:

ρ =
1

2N cα1...αNσα1 ⊗ ...⊗σαN (23)

where the coefficients αs may assume the values
{α = 0,1,2,3} (being σ0 = I , σ1 = σx, σ2 = σy, σ3 = σz) and
“s” indicates the s−th qubit with the sum made over repeated
indices. Normalization imposes the condition c0...0 = 1
and the other coefficients are assumed to be in the interval
−1 ≤ cα1...αN ≤ 1. Braunstein et al. [13] established that,
for two qubits, taking the minimum value of the coefficients,

cα1,α2 = −1, the bound ε ≤ 1/15 limits the region below
which ρε is separable. Generalization for arbitrary number of
qubits, N, leads to ε ≤ 1/4N. On another hand, since typically
ε ≈ 10−5 in bulk NMR experiments, at room temperature,
the authors conclude that not less than 13 qubits would be
necessary in order to get out of the separability region, with
the present NMR techology. One important observation is
that in Ref. [13] (implicitly) this bound is assumed to hold
independently ofρ1.

This bound can be made more precise if we notice that
the interval taken for the coefficients cα in [13] lead to non-
physical density-matrices. In what follows, we illustrate the
case N = 2, for which:

ρN=2 =
1
4




−2 −2+ 2i −2+ 2i 2i
−2−2i 2 −2 0
−2−2i −2 2 0
−2i 0 0 2


 (24)

This matrix satisfies the constraint Tr(ρ) = 1, but with eigen-

values λ1 = −2+2
√

3
4 ,λ2 = −2−2

√
3

4 < 0,λ3 = λ4 = 1. Since a
physicalmatrix must be a positive operator [5], it cannot be
regarded as representing a physical system. The same is true
for other values of N.

In order to find a valid interval for N = 2, consider a par-
ticular example where all the coefficients are equal to some
constant cα1,...,αN = c in Eq.(23), and let us impose λ ≥ 0
for the eigenvalues of the resulting matrix. This leads to
−0.15 ≤ c ≤ 0.33. It should be noted that this is only one
possible set of values for the coefficients. Observe that the
intervals −1 ≤ c < −0.15 and 0.33 < c ≤ 1 define infinite
non-physical matrices within −1 ≤ c≤ 1.

With the new interval, the eigenvalues for the case N = 2
and c = −0.15, are all positive and ρ satisfies tr(ρ) = 1:

{λ i} = {0.007596,0.267404,0.362499,0.362500}

The above considerations are in accordance with the so-
called entanglement fidelity, a quantum measure for the de-
gree of entanglement in a system [5]. Quantum noisy de-
stroys entanglement leading the fidelity to its classical value
[5]. To take noisy into account in our experiment, we notice
that, within the time scale of the spin-spin (transverse) relax-
ation time, T2, a NMR experiment can be formally viewed
as a depolarization channel quantum process. In this noisy
process, the initial density matrix ρ is replaced by the identity
with probability p, or is left untouched with probability 1− p
[5]:

ε(ρ) = p
I4

4
+(1− p)ρ

Comparing ε(ρ) with Eq. (22), one can identify p ≡ 1− ε.
Writing ε(ρ) = ∑k EkρE†

k , where Ek are the operation ele-
ments [5] for the depolarization channel which, in the case
of two-qubits, are:
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E1 =

√
1− 15(1− ε)

16
I4 , E2 =

√
1− ε

16
σ1⊗σ1 , E3 =

√
1− ε
16

σ1⊗σ2

E4 =

√
1− ε
16

σ1⊗σ3 , E5 =

√
1− ε
16

σ2⊗σ1 , E6 =

√
1− ε
16

σ2⊗σ2

E7 =

√
1− ε
16

σ2⊗σ3 , E8 =

√
1− ε
16

σ3⊗σ1 , E9 =

√
1− ε
16

σ3⊗σ2

E10 =

√
1− ε

16
σ3⊗σ3 , E11 =

√
1− ε
16

I4⊗σ1 , E12 =

√
1− ε
16

I4⊗σ2

E13 =

√
1− ε
16

I4⊗σ3 , E14 =

√
1− ε
16

σ1⊗I4 , E15 =

√
1− ε
16

σ2⊗I4

E16 =

√
1− ε
16

σ3⊗I4

From this, we can calculate the entanglement fidelity [5], F = ∑k |tr(ρEk)|2 which, for the limiting case cα1,α2 = −1 results
independent of ε:

F =
16

∑
k=1

|tr(ρEk)|2 =
1

16
(1+ 15ε)+ 15

(1− ε)
16

= 1

This result shows that the limit cα1,α2 = −1 for the Pauli ex-
pansion coefficients is not physically valid. On another hand,
if we take c = −0.15 we find, after working ρ1 and ρε out,

F(ε) = 0.0836+ 0.9164ε

which reaches the value for entanglement, F = 0.5, at ε ≈
0.45, in agreement with our previous analysis.

Finally, if we take ρ1 as the cat state:

ρ1 =




0.5 0 0 0.5
0 0 0 0
0 0 0 0

05 0 0 0.5


 (25)

and calculate ρε, we find for the entanglement fidelity:

F(ε) = 0.25+ 0.75ε

which reaches 0.5 for ε = 0.33. This value coincides with the
upper bound given in [13].

The experimental characterization of entanglement is not
simple, but one can seek for indirect evidences by looking at
quantities which can be derived from density matrices, such as

the entropy. As it must be for any pure state, the entropy of an
entangled state is zero. However, quite contrary to what hap-
pens to pure product states, the entropy of individual qubits
of entangled states is maximum. Therefore, we can expect a
decrease in the entropy of a two-partite system in an entangled
state [5].

From tomographed density matrices one can build the en-
tropy according to:

SA,B = −Tr(ρ lnρ) (26)

The entropy of individual qubits can be obtained from the
partial trace operation [5]:

SA = −TrA[TrB(ρ) ln(TrBρ)]; SB = −TrB[TrA(ρ) ln(TrAρ)]
(27)

where TrA(B) is the partial trace over the qubit A(B) Hilbert
space [5]. Since the entropy is additive only for product states
[5], that is SA,B = SA+SB, the difference ∆S≡ |SA,B−SA−SB|
(is equal to the quantum mutual information, and according
to [29] is also the total amount of correlations, for an ar-
bitrary bipartite quantum state) should be (ideally) zero for
product states and maximum for entangled states. The table
below shows the calculated ∆Sfrom tomographed density ma-
trices of various product states (computational base states and
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Hadamard states) and two Bell states. One notice that ∆S is
clearly larger in the case of entangled states.

TABLE 1: Quantum states and their respectives quantum mu-
tual information, determined experimentally, as explained on
the text.

State representation |∆S|(×10−7)
1√
2
[|01〉+ |10〉] 0.87

1√
2
[|01〉− |10〉] 0.85
|00〉 0.13
|01〉 0.09
|10〉 0.02
|11〉 0.08

1√
2
[|00〉+ |01〉] 0.28

1√
2
[|00〉− |01〉] 0.16

1√
2
[|01〉+ |11〉] 0.35

1√
2
[|01〉− |11〉] 0.39

VII. PERSPECTIVES FOR NMR QUANTUM COMPUTING

NMR has been, by far, the most sucessful technique in
the demonstration of the principles of quantum computing
in small systems, and was responsible for the initial excite-
ment which lead to a number of important results in quantum
computation and quantum information. NMR has the optimal
tools to implement quantum logic gates, but unfortunetly the
highly mixed states of bulk NMR samples, pose serious diffi-
culties in what concerns the interpretation of experiments, par-
ticularly the characterization of entanglement. In view of this
picture, one could ask: what is the future for NMR quantum
computing? Recent important experimental advances suggest
that there is reason to be optimistic!

First of all, it is important to realize that the discussion
about producing or not entanglement in NMR quantum com-
puting concerns the nature of the sample, and not the working
principlesof the technique. Besides, although important, en-
tanglement is not always present in quantum computation al-
gorithms, the best example being the Grover search algorithm
[5]. There is no doubt that radiofrequency pulses implement
the universal set of quantum logic gates, upon which quan-
tum computers can be built. Therefore, if an appropriate sam-
ple could be produced, would NMR quantum chips become
a reality? The answer is yes, they would. Important recent
achievements [11] show that the problem of the exponentially
small value of ε can be supressed using laser techniques to

pump the spins into a true pure state. Experiments have cur-
rently produced ε ≈ 0.9.

In what concerns a possible quantum chip arquiteture, the
first concrete proposal was made in 1998 by Bruce Kane [30].
In his design, an array of phosphorus nuclei is embedded in
a silicon lattice. Kane showed that if such an array could be
built (the atoms should be only a few angstroms apart), the
hyperfine interaction between neighbor nuclei could be con-
trolled through electrical gates, and quantum logic gates im-
plemented by conventional NMR. Since in this arrangement
the array of phosphorus does not form a statistical ensemble,
the design would not be subject to the difficulties pointed by
Braunstein et. al. [13]. An interesting variation to this ideia is
the “all silicon NMR quantum computer” proposed by Ladd
and co-workers [31].

Although important drawbacks on Kane’s design were
pointed out by Koiller et al., [32], who also made inovative
refinements to the orignal idea [33], his work brought the no-
tion that advantages could be taken from the well known semi-
conductor technology into quantum computation, and various
groups around the word pursue this idea.

Finally, one must mention that one of the main difficul-
ties with Kane’s design and its variations, concerns the sen-
sitivity of detection. The sensitivity of conventional NMR
is restricted to a minimum of about 1015 nuclear spins. In
the original Kane’s proposal, the detection should be made
on the electronic charge, rather than directly on the nuclear
spins. In the Ref. [31] it is suggested that optical techniques
would do well in preparing initial states, whereas read out op-
erations could be performed using cyclic adiabatic inversion.
Both difficulties (initial state preparation and readout) seems
to be very close to be supressed. First Anwar et al., [11] have
shown how to prepare almost pure initial states using laser
techniques. Second, Rugar et al., [12] combined the tech-
niques of NMR and AMF (Atomic Force Microscopy) to a
technique known as MRFM (Magnetic Resonance Force Mi-
croscopy) to produce NMR tomographic images with resolu-
tion of a single spin! This is very encouraging, since it means
the possibility of manipulating individual qubits on a quan-
tum chip, bringing new perspectives into the original idea of
Kane. The development in this area follows closely the fast
growing field of nanotechnology, and important advances can
be expected for the next few years. In conclusion, the gen-
eral picture is very encouraging and points to a rapid progress
in both, architecturing quantum chips, manipulation of indi-
vidual qubits, and increasing the detection sensitivity. These
are the very basic ingredients towards a large scale quantum
computer.
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