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A method for performing quantum state tomography for quadrupole nuclei is presented in this paper. First,
it is shown that upon appropriate phase cycling, the nuclear-magnetic-resonance(NMR) intensities of quad-
rupole nuclei depend only on diagonal elements of the density-matrix. Thus, a method for obtaining the
density-matrix elements, which consists of dragging off-diagonal elements into the main diagonal using fine
phase-controlled selective radio-frequency pulses, was derived. The use of the method is exemplified through
23Na NMR (nuclear spinI =3/2) in a lyotropic liquid crystal at room temperature, in three applications:(a) the
tomography of pseudopure states,(b) the tomography of the quadrupole free evolution of the density matrix,
and(c) the unitary state evolution of each qubit in the system over the Bloch sphere upon the application of a
Hadamard gate. Further applications in the context of pure NMR and in the context of quantum information
processing, as well as generalizations for higher spins, are discussed.
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I. INTRODUCTION

Nuclear-magnetic-resonance(NMR) quantum computing
appeared in the late 1990s as the main candidate for imple-
mentation of quantum processors[1]. However, it was soon
recognized[2,4] that exponential loss of NMR signal upon
increasing number of qubits would pose severe restrictions
concerning the scalability of systems for quantum computing
in large scale. Such observations stimulated a very interest-
ing debate[5,6] about the capability of NMR to implement
true quantum operations, particularly to produce entangle-
ment[1]. In this context, it is rather surprising that not much
effort has been directed to the experimental demonstrations
of quantum information processing by NMR, in spite of
many claims of quantum algorithm implementation[7–9].
For instance, to the best of our knowledge, no experiment
has clearly shown the unitarity and reversibility of a one-
qubit gate such as the Hadamard gate and its adjoint, or the
quantum circuit which generates entanglement[10]. By this
we mean experiments where quantum state tomography is
implemented at every step of the gate and the trajectory of
the one qubit state is traced over the Bloch sphere(see how-
ever Ref. [8], where quantum state tomography is imple-
mented for the whole cycle of Grover algorithm).

In this sense, it appears that, from the point of view of
pure quantum information processing by NMR, there is still
something left to be learnt from one- and two-qubit systems.
For this purpose, quadrupole nuclei are particularly well
adapted. Implementation of pseudopure states[11], elemen-
tary logic gates[12], simulation of quantum systems[13],
and relaxation studies[14] have been reported in the recent
literature of NMR quantum computing. All these studies

were based only on NMR spectral analysis that is, none of
them exhibited quantum-state tomography. From the strict
point of view of quantum information processing, they are
intrinsically less informative, since different density matrices
can give rise to the same NMR spectrum. In this paper we
report a method for quantum state tomography in quadrupole
nuclei. We show that, upon appropriate phase cycling of the
selective radio-frequency reading pulses, the NMR intensi-
ties will be related only to the density-matrix diagonal ele-
ments. After “dragging” the nondiagonal elements to the
main diagonal, using phase controlled selective pulses a set
of coupled equations was obtained, from which the real and
imaginary parts of the density matrix can be determined. We
apply the method to a spinI =3/2 (two-qubit) system formed
by 23Na nuclei in a lyotropic liquid crystal at room tempera-
ture. Three applications are shown:(a) the four pseudopure
states;(b) the free evolution of the density matrix under
quadrupole interaction, and(c) the unitary evolution of a
single qubit under the application of a double Hadamard
gate. From this experiment, we rebuilt the evolution of the
Bloch vector of one qubit over the Bloch sphere.

This paper is organized as follows. The experimental de-
tails are given in Sec. II. Some features of the quadrupole
systems are presented in Sec. III, and the process for obtain-
ing the quantum state tomography for quadrupole nuclei is
discussed in Sec. IV. Finally, the results are presented in Sec.
V, followed by the conclusions. The Appendix shows some
results of tomographed density matrices compared to calcu-
lated ones using ideal rotations.

II. EXPERIMENTAL PROCEDURES

The 23Na NMR experiments described in this paper were
performed using a 9.4 T VARIAN INOVA spectrometer in a
lyotropic liquid-crystal system prepared with 35.9 wt. % of
sodium decyl sulfate(Fluka), 7 .2 wt. % of decanol(Su-

*Email address: sarthour@cbpf.br
†Email address: azevedo@if.sc.usp.br

PHYSICAL REVIEW A 69, 042322(2004)

1050-2947/2004/69(4)/042322(9)/$22.50 ©2004 The American Physical Society69 042322-1



pelco), and 56.9 wt. % deuterium oxide(D2O, Merck), fol-
lowing the procedure described elsewhere[15]. 23Na NMR
data were recorded at room temperature using a home-built
single-resonance probe with radio-frequency(rf) Helmholtz-
like rectangular coils(only one loop 2.5 cm high and 1 cm
wide) separated by 7.5 mm. The geometry of the coils was
chosen in order to improve rf magnetic field homogeneity
along the sample, which was packed in a 5 mm NMR tube
0.5 cm high. Numerical simulations showed that the rf field
homogeneity is higher than 95% over the sample volume.
The B0 field homogeneity was about 0.1 ppm. Gaussian
shaped rf pulses were used to perform selective saturation
sp /2d and inversionspd of populations. Pulse durations were
set to provide a multiple of 2p rotations under the quadru-
polar interaction in order to minimize possible effects of the
quadrupolar evolution during the pulses[20]. The mean rf
amplitudes and the frequency offsets were carefully adjusted
to satisfy the selectivity condition[16–18]. The experimental
calibration was checked against numerical simulations using
the full Hamiltonian, which showed that the single-quantum
transition, the case of the Hadamard operation on the first
qubit, is not affected by the quadrupolar interaction. A non-
selective hardp /20 pulse 1.5ms long was applied in order
to measure the differences of populations for the three pairs
of neighbor levels. Experiments were performed with a re-
cycle delay of 500 ms. The23Na NMR spectra were obtained
averaging the free induction decay(FID) signal, obtained for
each phase(x, y, −x, and −y) of the readingp /20 hard pulse
accompanied by the corresponding receiver cycling(stan-
dard CYCLOPS scheme). Finally, all the spectra were nor-
malized using the intensities of the equilibrium state.

III. NMR QUADRUPOLE SYSTEMS

The most relevant interactions of a quadrupole nucleus
are the Zeeman interaction with a magnetic field and the
electric quadrupole moment with an electric field gradient.
The Hamiltonian for this system can be described in first
order by Eq.(1), wherevL is the Larmor frequency of the
nuclear magnetic moment in the presence of a magnetic
field, andvQ is the effective quadrupole frequency charac-
terized by the interaction between the nuclear quadrupole
moment with the electric-field gradient[19].

H = − "vLI z + "vQs3I z
2 − I 2d. s1d

For a spin-3/2 system this Hamiltonian gives rise to four
unequally spaced energy levels, originating an NMR spec-
trum containing three lines, corresponding to transitions be-
tween adjacent levelsssee Fig. 1d. These energy statesu3/2l,
u1/2l, u−1/2l, and u−3/2l can be labeled asu00l, u01l, u10l,
and u11l in analogy to two-qubit system containing two
I =1/2 coupled spinsf11,12,14g. From the Hamiltonian,
the density matrix can be obtained according to Eq.s2d, in
the high-temperature regime, whereZ is the partition
function, n is the number of qubits, andb=1/kBT and «
=b /2n<10−5 for n=2 at room temperature.

r =
e−bH

Z
<

1

2ns1 − bHd =
1

2n − «H. s2d

Since radio-frequency pulses are unitary operations, they act
only on the part«H of Eq. s2d. Therefore, the measured
quantity in NMR experiments is the traceless deviation den-
sity matrix, which in the equilibrium is given by

Dreq= − «H. s3d

Before performing quantum computing, it is necessary to
prepare the system in a pseudopure state. This can be done
using the pulse sequences described by Fungf11g and Sinha
f12g, and then applying a magnetic field gradient to the sys-
tem, in order to get rid of undesired off-diagonal elements. In
this work, the pseudo-pure states were prepared using the
same pulse sequences described in referencesf11,12g, but
employing an additional twofold phase cyclingsx,yd in the
p /2 pulses as an alternative to the use of magnetic field
gradient. The quantum operations were applied to the states
obtained for each phase of thep /2 pulse, which creates the
pseudopure states. Therefore, four distinct NMR signals
were detected, and the final result, obtained after averaging,
was the same as if the quantum gates had been applied to a
pseudo pure state. For instance, the sequences for creating
the pseudopure state, represented byr00=s1/2nds1−«d
+«u00lk00u, are shown in Eq.s4d, whereYab represents a
selectivep /2 pulse applied to the transitionsa⇔bd along

y direction, andX̄ab represents a selectivep /2 pulse ap-
plied to the transitionsa⇔bd along −x direction. The
squared symbols represent selectivep pulses:

U1 = X23 ·Y12
2 ,

U2 = X̄23 ·Y12
2 ,

U3 = Y23 ·Y12
2 ,

U4 = Ȳ23 ·Y12
2 . s4d

Therefore, the pseudopure stater00 can be constructed from
the equilibrium statereq, as described in Eq.(5).

FIG. 1. Schematic representation of the energy levels, for a spin-
3/2 system, with their respective labels.
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r00 =
1

4o
j

UjreqUj
†. s5d

IV. TOMOGRAPHY METHOD

The density matrix of a general system and, consequently,
its deviation contains complex elements, except in the main
diagonal, which contains only positive real numbers. In ad-
dition, the elements above the main diagonal are the complex
conjugate of the ones below, so for a spin-3/2 system devia-
tion density matrices have the general form

Dr = 3
a xa + iya xb + iyb xc + iyc

xa − iya b xd + iyd xe + iye

xb − iyb xd − iyd c xf + iyf

xc − iyc xe − iye xf − iyf d
4 . s6d

Therefore, to obtain the quantum-state tomography of any
state, it is necessary to determine 16 variables, which are the
four real elements of the main diagonal, and the other 12
formed by real and imaginary parts of the nondiagonal ele-
ments. For quadrupole systems, the averaged NMR spec-
trum, obtained after applying the CYCLOPS scheme to the
p /20 reading pulse and receiver, depends only on the di-
agonal elements ofDr. In fact, for the spin 3/2 system
described byDr, the intensities of each peak of the NMR
spectrum obtained after applying the reading scheme are
given by Eq.s7d.

A1 = Î3se11e12a − e12e22b − e23e13c − e13e14dd,

A2 = 2se13e12a + e22e23b − e23e22c − e13e12dd,

A3 = Î3se13e14a + e13e23b + e12e22c − e11e12dd. s7d

Theeij are absolute values of thep /20 reading pulse matrix
elements along any direction, as described in the Appendix.
A1, A2, andA3 stand for the NMR spectra intensities for the
transitions s0⇔1d, s1⇔2d and s2⇔3d, respectively. Be-
cause observable NMR deviation matrices are traceless,a
+b+c+d=0, a fourth equation can be added to the system.
Therefore, the four diagonal elements can be obtained after
measuring each of the line intensities of the averaged spec-
trum and solving the set of Eq.(7). The first step of the state
tomography is to obtain the deviation density matrix main
diagonal, by using the process described above. For a spin-
3/2 system, the result gives the four diagonal elements,a, b,
c, andd of Eq. (6). In order to get the off-diagonal elements
and determine the state tomography, rf transition-selective
pulses were used. The evolution operators for these pulses
can be constructed according to Eq.(8) in the rotating frame.

U = exps− i · fH + "vRFI z − "v1I ag · tp/"d. s8d

The parametervRF is the selective pulse carrier frequency,
v1 is the amplitude of the rf pulsesv1=g B1d, I a is the
angular momentum spin operator in thea direction, andtp is
the pulse duration. The effect of the pulse operator is to
induce rotations in the spin system, allowing the manipula-

tion of the phase of the off-diagonal elements of the density
matrix, and consequently controlling the phase of the quan-
tum state.

A complete set of these ideal pulse matrices is shown in
the Appendix. The symbolsX01 andY23 stand forp /2 pulses
applied to the transitions0⇔1d along thex direction and to
the transitions2⇔3d along they direction, respectively. The
effect of the application of such pulses to the system is to
bring the off-diagonal elements of the density matrix to the
main diagonal, as it is shown in Eq.(9), where only the main
diagonal elements are displayed for simplicity. The experi-
mental procedure for calibration of the pulses is given in Sec.
II, and the effects of nonperfect selectivity are discussed in
the concluding section.

rsX01d = X01 · Dr ·X01
†

=
1

23
a + 2ya + b

a − 2ya + b

2c

2d
4 ,

rsY23d = Y23 · Dr ·Y23
†

=
1

23
2a

2b

c + 2xf + d

c − 2xf + d
4 . s9d

As can be seen from Eq.(9), ya andxf are easily determined
if the diagonal elements are known. Since the diagonal ele-
ments of the density matrix can be obtained by the method
described earlier, the real and imaginary parts of the off-
diagonal elements are easily obtained. A complete set of
equations that allow the determination of all off-diagonal el-
ements of the deviation density matrix is shown in Eq.(10).

ya = fr11sX01d − r22sX01dg/2,

yd = fr22sX12d − r33sX12dg/2,

yf = fr33sX23d − r44sX23dg/2,

xa = fr11sY01d − r22sY01dg/2,

xd = fr22sY12d − r33sY12dg/2,

xf = fr33sY23d − r44sY23dg/2,

xb = fr22sX12X01d − r33sX12X01d − Î2ydg/Î2,

yb = fr33sY12X01d − r22sY12X01d + Î2xdg/Î2,

xe = fr33sX23X12d − r44sX23X12d − Î2yfg/Î2,

ye = fr44sY23X12d − r33sY23X12d + Î2xfg/Î2,
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xc = r33sY23Y12Y01d − r44sY23Y12Y01d − Î2xf + xe,

yc = r44sX23X12X01d − r33sX23X12X01d + Î2yf + xe. s10d

The expressionrkksXmn, . . . ,Yijd stands for the diagonal ele-
ment (kth line andkth column) of the deviation density ma-
trix after the application of the respectivesXmn, . . . ,Yijd pulse
sequence, from right to left. Because the main diagonal was
obtained beforehand, the whole matrix is known. In
summary, the method to obtain the deviation density
matrix—state tomography—consists of determining its diag-
onal elements, after performing operations on the system,
which drag the off-diagonal elements into the main diagonal.
Double-quantum selective pulses can also be used for deter-
mining the elementsr13, r24, and r14, and this method has
the advantage of utilizing a smaller number of pulses, as it is
shown in Eq.(11). However, all the results described in this
paper were obtained using single-quantum selective pulses.

xb = fr11sY02d − r33sY02dg/2,

yb = fr11sX02d − r33sX02dg/2,

xe = fr22sY13d − r44sY13dg/2,

ye = fr22sX13d − r44sX13dg/2,

xc = fr44sY23Y13d − r33sY23Y13d + Î2xfg/Î2,

yc = fr44sY23X13d − r33sY23X13d + Î2xfg/Î2. s11d

It is also possible to use multifrequency pulses, so that
many imaginary(or real) parts of different elements can be
obtained simultaneously. As an example, for spin 3/2, one
can excite the transitionss0⇔1d and s2⇔3d using a single
two-frequency pulse. Since these pulses operate on com-
pletely different quantum states, parts of the elementsr12 and
r34 can be obtained from the new diagonal elements, simul-
taneously[see Eq.(9)]. The use of multifrequency pulses
becomes more interesting for higher spin systems. The op-
erators of the selective pulses are easily obtained for other
quadrupole systems with higher values of spin, and they
have the same form of Eq.(8). In addition, the equations for
each matrix element are easily found by applying the ideal
pulse operators pulses onDr. As a result, the quantum state
tomography process described here can be straightforwardly
extended to any quadrupole system, provided that the NMR
spectrometer allows the application of selective pulses with
reliable phase control.

V. EXPERIMENTAL RESULTS

The procedure of quantum state tomography described in
this paper was applied to a spin-3/2 system, using single-
quantum selective pulses. The deviation density matrix was
obtained experimentally for several coherent states. The to-
mography of the equilibrium state was also found, and is
presented in Fig. 2. The real and imaginary parts of the mea-

sured matrix are shown on the left and right hand side of
figure, respectively. The simulated and experimentally deter-
mined deviation density matrices for this state are described
in the Appendix.

A. Pseudopure states

The tomography of the deviation density matrices repre-
senting the four pseudopure states, which we will labelDr00,
Dr01, Dr10, andDr11 were obtained, and they are presented
in Fig. 3, where only the real part is shown for simplicity,
since the contribution of the imaginary part is irrelevant to
these states(see the numerical results in the Appendix). The
simulated and experimentally determined deviation density
matrices for each one of the pseudopure states are also de-
scribed in the Appendix.

B. Unitary Hadamard evolution

The Hadamard gate is an one-qubit quantum gate, and for
quadrupole systems it can be constructed using two selective
pulses, as reported in Ref.[14] Both pulses have the same
frequency—the same as the first transitions0⇔1d; however,
the first one is ap /2 pulse applied along they direction, and
the last one is ap pulse along the −x direction. The evolution
of this gate was followed, for each individual stage—after
the application of each selective pulse—when it was applied
twice to the initial pseudopure stater00. The real part of the
state tomography for the four stages(one for each pulse) of

FIG. 2. (Color online) Quantum state tomography the deviation
matrix of the equilibrium state of23Na (I =3/2, two qubits). The
real and imaginary parts of the density matrix are shown on the left
and right hand side, respectively.

FIG. 3. (Color online) The real part of the quantum-state tomog-
raphy for the deviation matrices representing the four pseudopure
states, as described in the text.
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the H2 (Hadamard gate applied twice) sequence are pre-
sented in Fig. 4, where the symbols in the figure stand for:
Dr1 (afterY01), Dr2 (after X̄01

2 ·Y01), Dr3 (afterY01·X̄01
2 ·Y01),

and Dr4 (after X̄01
2 ·Y01·X̄01

2 ·Y01). At the first stage of the
process the populations of the first two levels,u00l and u01l,
are equally splitted between the two lower levels. At the
second stage, the relative phases are manipulated. The sys-
tem is then taken to the pseudopure stater01 at the third
stage. The initial state is recovered at the fourth and final
stage. An important imaginary contribution was detected af-
ter the first stage of the Hadamard gate, which does not ap-
pear in the simulations with ideal pulses. This shows that the
action of the experimental selective pulse applied to the sys-
tem deviates from the ideal(theoretical), which is due to
several factors and will be discussed in the conclusions. Nev-
ertheless, this imaginary part disappears at the end of the
whole process, and the self-reversibility of the Hadamard
gate is demonstrated. The simulated, and experimentally de-
termined density matrix for the four stages of the Hadamard
gate, are also presented in the Appendix.

As it can be seen in the Appendix, the experimental re-
sults have a fairly good agreement with the simulated ones.
The small difference observed before and after the applica-
tion of the double Hadamard gate is due a number of differ-
ent causes, one of which is the transverse relaxation. The
application of Hadamard gate takes about 2 ms(,500 ms
for each pulse), and the preparation of the pseudopure state
takes about 1 ms. Therefore, the full operation of the Had-
amard gate takes,3 ms, which is of the order ofT2 in this
system. We investigated the effects of other contributions
performing numerical simulations, which included the relax-
ation effects,B0 and rf field inhomogeneity, errors in the
pseudopure state preparation, deviation from perfect rf pulse
selectivity, and, finally, phase deviation, which includes rf
phases and phase errors in the states. These simulations in-
dicated that all these effects contribute to the error in the
phase of the final state, as observed in Fig. 6. As can be
observed in Fig. 4, the Hadamard gate is acting only on the
qubit bsuabld, while the qubit a remains practically un-
changed during this operation.

C. Quadrupolar free evolution

As a third example of quantum-state tomography applica-
tion, the free evolution of the density matrix was studied

after the application of a singlep /2 hard pulse, where the
carrier frequency was set on the transitions1⇔2d. The result
is shown in Fig. 5, where the points are experimental data
and dashed lines are computer simulations for this particular
quadrupole system. As can be seen from Fig. 5, the compo-
nents of the elementsrasra=xa+ iyad andr f oscillate with the
quadrupolar frequency, whilerd remains unchanged, be-
cause, contrarily to the transitionss0⇔1d and s2⇔3d, in

FIG. 5. (Color online) Free evolution of thexa, ya, xd, yd, xf, and
yf elements, after a hardp /2 pulse. The points are experimental
results while the lines are numerical simulations of the system.

FIG. 6. (Color online) The trajectory of the Bloch vector, for
each individual qubit, during the Hadamard gate evolution. The
points are experimental results, the dotted blue line is an interpola-
tion of the experimental data and the continuous red line is a nu-
merical simulation. Numbers indicate the end of each step(rf
pulse), and the points between the numbers correspond to matrices
tomographed from the application of the selective rf pulses in sev-
eral steps along their Gaussian envelopes(intermediate angles), ac-
quired for completeness.

FIG. 4. (Color online) The real part of the quantum tomography
after each stage of the Hadamard, as explained in the text.
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first order the transitions1⇔2d does not depend on the
quadrupole interaction.

VI. DISCUSSION AND CONCLUSIONS

The evolution of an one-qubit state represented by a den-
sity matrix r can be visualized through the motion of its
Bloch vector over the Bloch sphere. The density matrix for
the individual qubits can be obtained from the partial trace
[10] of the full density matrix of the system, which in this
case involves two qubits. In order to do so,(1/4)th of a unity
matrix was added to«Drs«<mH0/kBT<10−5d, whereDr is
the tomographed deviation density matrix for each individual
qubit, the Bloch vector for each one of them was obtained
according to Eq.(12) [10].

rstd =
1 + rstd · s

2
. s12d

The symbols represents a vector whose components are the
Pauli’s matrices, andrstdstands for the unit Bloch vector, at a
time t, which can be followed even during a logical opera-
tion, for each qubit. As a result, the trajectory on the Bloch
sphere was determined, during the application of a double
Hadamard gate on the qubitbsuabld as presented in Fig. 6,
where the points were obtained from Eq.s12d. The sredd
continuous line is a numerical simulation, using ideal pulses
ssee the Appendixd, and the dotted blue line is an interpola-
tion of the experimental points. As it can be seen from the
figure, the qubitb evolves according to the theoretical pre-
dictions, while the qubita remains basically unchanged dur-
ing the whole process.

After the application of the first pulse of the Hadamard
gate(p /2 aroundy, number 1 in Fig. 6), one can notice that
the state of qubitb does not evolve as predicted by the simu-
lations using the ideal pulses and the state after the first pulse
of the Hadamard gate is off thex axis(the possible causes for
this effect are discussed below). Therefore, when the second
pulse of the Hadamard gate is applied, the qubitb undergoes
a rotation ofp around thex direction, as clearly seen in the
semicircle from number 1 to number 2 in Fig. 6. The initial
and final one-qubit states are very close, which demonstrates
the self-reversibility of the Hadamard gate.

In the quantum tomography procedure proposed in this
paper, we neglected a number of effects, which—added
together—contribute to the errors in the tomographed devia-
tion density matrix and to the difference between the ideal
trajectory and the experimental data observed in Fig. 6(a
relative error of about,15° /360° =4%). The possible
sources of errors are(1) nonperfect selective pulses,(2) re-
laxation effects,(3) B0 andB1 field inhomogeneities, and(4)
relative phase errors associated to rf pulses applied along ±x
and ±y axes in the rotating frame. Most of them can be
minimized through a good calibration of the selective rf
pulses and the use of high homogeneity forB0 andB1 mag-
netic fields(as described in the experimental section). How-
ever, residual imperfections will always remain. Because the
tomography method has to distinguish the imaginary from
the real components of each element of the deviation density

matrix, phase errors are expected to be more important in the
case of superposition states like the Hadamard gate. Such
errors were numerically estimated by introducing spurious
phase contributions in the ideal pulse matrix, and simulating
the tomography process. The full Hamiltonian was also con-
sidered in these simulations, allowing an estimate of the er-
ror introduced by the use of ideal rotations. The results are as
follows.

First, we consider the selectivity. Because in our experi-
ments wasv1/vQ chosen to be approximately 0.02, the error
due to nonperfect selectivity is less than 1% per applied
pulse. This small effect is apparent in Fig. 6 as a slight
change for the Bloch vector associated to qubita. Another
important source of error is the spin-spin relaxation(spin-
lattice relaxation time is too long, compared to the time scale
of the experiment[14]), which combined with the nonselec-
tivity produces a phase error of at most 2° per applied pulse.
Also, small uncertainties in the quadrature of the spectrom-
eter (maximum of 2°, for the equipment used) and B1 field
inhomogeneity can produce a total phase deviation of at most
4° per applied pulse. Added together, these sources account
for a total phase deviation per applied pulse of at most 5°.
Assuming this phase error per pulse, it is possible to estimate
the intrinsic uncertainty involved in the tomographed data
introducing them into the matrices that represent the pulses
in the simulation. With this, we arrived to a percent error of
at most 6%(for the main diagonal) upto 9%(for high-order
coherences). It should be noted that this error tends to in-
crease for higher-order coherences. This is confirmed by the
good agreement between the experimental and simulated
density matrices, for the equilibrium and pseudostates, where
fewer pulses with proper phase cycling were used. However,
these errors accumulate during the execution of a quantum
gate such as the Hadamard gate, producing states deviations,
such as observed in Fig. 6.

In summary, the quantum-state tomography has been suc-
cessfully implemented for the first time(to the best of au-
thors’ knowledge) for a quadrupole system. The experimen-
tal results are in good agreement with the calculated ones,
and this process can be easily extended for higher spin val-
ues. The quantum-state tomography of the Hadamard evolu-
tion and the trajectory of the Bloch vector on the Bloch
sphere demonstrate that one and two qubits logical opera-
tions can be implemented on quadrupole systems.
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APPENDIX
Ideal selective pulses are used to derive the equations that

determine the nondiagonal density matrix elements.
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Î2

0 0

0 0 1 0

0 0 0 1

4, Y01 = 3
1
Î2

1
Î2

0 0

− 1
Î2

1
Î2

0 0

0 0 1 0

0 0 0 1

4 ,

X12 = 3
1 0 0 0

0
1
Î2

i
Î2

0

0
i

Î2

1
Î2

0

0 0 0 1

4, Y12 = 3
1 0 0 0

0
1
Î2

1
Î2

0

0
− 1
Î2

1
Î2

0

0 0 0 1

4 ,

X23 = 3
1 0 0 0

0 1 0 0

0 0
1
Î2

i
Î2

0 0
i

Î2

1
Î2

4, Y23 = 3
1 0 0 0

0 1 0 0

0 0
1
Î2

1
Î2

0 0
− 1
Î2

1
Î2

4 .

Theeij coefficients are the absolute values of thep /20 hard
reading pulse.

eij = 3
0.9908 0.1351 0.0106 0.0005

0.1351 0.9785 0.1555 0.0106

0.0106 0.1555 0.9785 0.1351

0.0005 0.0106 0.1351 0.9908
4 .

Experimental results are compared with simulated ones, for
the equilibrium state and the pseudopure ones.

Dreq
sim=

1

23
3 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 − 3
4 ,

Dr00
sim=

1

23
3 0 0 0

0 − 1 0 0

0 0 − 1 0

0 0 0 − 1
4 ,

Dr01
sim=

1

23
− 1 0 0 0

0 3 0 0

0 0 − 1 0

0 0 0 − 1
4 ,

Dr10
sim=

1

23
1 0 0 0

0 1 0 0

0 0 − 3 0

0 0 0 1
4 ,

Dr11
sim=

1

23
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 − 3
4 ,

Dreq
exp= 3

1.50 − 0.02 − 0.01i − 0.04 + 0.05i 0.04 − 0.08i

− 0.02 + 0.01i 0.43 − 0.01 − 0.01i − 0.03

− 0.04 − 0.05i − 0.01 + 0.01i − 0.51 − 0.03

0.04 + 0.08i − 0.03 − 0.03 − 1.42
4 ,

Dr00
exp= 3

1.50 − 0.01 − 0.01i 0.03 − 0.02i − 0.04 + 0.02i

− 0.01 + 0.01i − 0.44 0 − 0.01i

0.03 + 0.02i 0 − 0.51 0.03 + 0.02i

− 0.04 − 0.02i 0.01i 0.03 − 0.02i − 0.55
4 ,

Dr01
exp= 3

− 0.60 0.04 + 0.03i 0.03 − 0.02i 0.04 − 0.03i

0.04 − 0.03i 1.50 − 0.04 − 0.04i 0.01

0.03 + 0.02i − 0.04 + 0.04i − 0.42 − 0.01i

0.04 + 0.03i 0.01 0.01i − 0.48
4 ,
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Dr10
exp= 3

0.58 0.01 − 0.03 + 0.02i − 0.09 − 0.12i

0.01 0.54 − 0.04 − 0.04i − 0.01 + 0.06i

− 0.03 − 0.02i − 0.04 + 0.04i − 1.50 0.07 − 0.01i

− 0.09 + 0.12i − 0.01 − 0.06i 0.07 + 0.01i 0.38
4 ,

Dr11
exp= 3

0.52 0.02 + 0.03i 0.01 − 0.01i − 0.01 − 0.01i

0.02 − 0.03i 0.53 0 0

0.01 + 0.01i 0 0.44 0.01 + 0.01i

− 0.01 + 0.01i 0 0.01 − 0.01i − 1.50
4 .

Experimental results are compared with simulated ones, for the four stages of the Hadamard sequence.

Dr1
sim=

1

23
1 − 2 0 0

− 2 1 0 0

0 0 − 1 0

0 0 0 − 1
4 , Dr2

sim=
1

23
1 − 2 0 0

− 2 1 0 0

0 0 − 1 0

0 0 0 − 1
4 ,

Dr3
sim=

1

23
− 1 0 0 0

0 3 0 0

0 0 − 1 0

0 0 0 − 1
4 , Dr4

sim=
1

23
3 0 0 0

0 − 1 0 0

0 0 − 1 0

0 0 0 − 1
4

Dr1
exp= 3

0.44 − 0.75 + 0.26i 0.00 + 0.00i 0.02 − 0.02i

− 0.75 − 0.26i 0.50 − 0.03 − 0.03i 0.02 − 0.02i

0.00 − 0.00i − 0.03 + 0.03i − 0.45 − 0.00 + 0.02i

0.02 + 0.018i 0.02 + 0.02i − 0.01 − 0.00i − 0.49
4 ,

Dr2
exp= 3

0.64 − 0.87 − 0.15i − 0.03 + 0.03i 0.01 − 0.01i

− 0.87 + 0.15i 0.5000 − 0.030 − 0.03i 0.03 + 0.00i

− 0.03 − 0.03i − 0.03 + 0.03i − 0.53 − 0.00 − 0.00i

0.01 + 0.01i 0.03 − 0.00i − 0.00 + 0.00i − 0.61
4 ,

Dr3
exp= 3

− 0.23 − 0.03 − 0.09i 0.03 − 0.02i 0.07 − 0.03i

− 0.03 + 0.09i 1.5 − 0.07 − 0.08i 0.02 − 0.03i

0.03 + 0.02i − 0.07 + 0.08i − 0.59 − 0.03 − 0.02i

0.07 + 0.03i 0.02 + 0.03i − 0.03 + 0.02i − 0.68
4 ,

Dr4
exp= 3

1.5 − 0.08 + 0.21i − 0.06 + 0.02i − 0.08 + 0.00i

− 0.08 − 0.21i − 0.23 − 0.00 − 0.01i − 0.01 + 0.00i

− 0.06 − 0.02i 0.00 + 0.01i − 0.58 0.04 + 0.03i

− 0.08 − 0.00i − 0.01 − 0.00i 0.04 − 0.03i − 0.6934
4 .
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