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Quantum-state tomography for quadrupole nuclei and its application on a two-qubit system
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A method for performing quantum state tomography for quadrupole nuclei is presented in this paper. First,
it is shown that upon appropriate phase cycling, the nuclear-magnetic-resqhiviBy intensities of quad-
rupole nuclei depend only on diagonal elements of the density-matrix. Thus, a method for obtaining the
density-matrix elements, which consists of dragging off-diagonal elements into the main diagonal using fine
phase-controlled selective radio-frequency pulses, was derived. The use of the method is exemplified through
23Na NMR (nuclear spirl =3/2) in a lyotropic liquid crystal at room temperature, in three applicati¢gsthe
tomography of pseudopure statéls) the tomography of the quadrupole free evolution of the density matrix,
and(c) the unitary state evolution of each qubit in the system over the Bloch sphere upon the application of a
Hadamard gate. Further applications in the context of pure NMR and in the context of quantum information
processing, as well as generalizations for higher spins, are discussed.
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I. INTRODUCTION were based only on NMR spectral analysis that is, none of
) i them exhibited quantum-state tomography. From the strict
Nuclear-magnetic-resonan¢®MR) quantum computing point of view of quantum information processing, they are

appeared in the late 1990s as the main candidate for implegyinsically less informative, since different density matrices
mentation of quantum processddg. However, it was Soon  cap give rise to the same NMR spectrum. In this paper we
recognized(2,4] that exponential loss of NMR signal upon renort a method for quantum state tomography in quadrupole
increasing number of qubits would pose severe restrictiongcjei. We show that, upon appropriate phase cycling of the
concerning the scalability of systems for quantum computingg|ective radio-frequency reading pulses, the NMR intensi-
in large scale. Such observations stimulated a very interestjas will be related only to the density-matrix diagonal ele-
ing debatef5,6] about the capability of NMR to implement ' ments. After “dragging” the nondiagonal elements to the
true quantum operations, particularly to produce entanglemain diagonal, using phase controlled selective pulses a set
ment[1]. In this context, it is rather surprising that not much ¢ coupled equations was obtained, from which the real and
effort has been directed to the experimental demonstratioqﬁqagmary parts of the density matrix can be determined. We
of quantu_m information proces_sing .by NMR, in. spite of apply the method to a spire3/2 (two-qubit system formed
many claims of quantum algorithm implementatipi-9.  py 23\a nuclei in a lyotropic liquid crystal at room tempera-
For instance, to the best of our knowledge, no experimenf e Three applications are show@) the four pseudopure

has clearly shown the unitarity and reversibility of & one-giates;(b) the free evolution of the density matrix under
qubit gate such as the Hadamard gate and its adjoint, or ﬂl‘ﬁjadrupole interaction, angt) the unitary evolution of a

quantum circuit which generates entanglemdf. By this  gingle qubit under the application of a double Hadamard
we mean experiments where quantum state tomography igyte. From this experiment, we rebuilt the evolution of the
implemented at every step of the gate and the trajectory of|och vector of one qubit over the Bloch sphere.

the one qubit state is traced over the Bloch spltsee how- This paper is organized as follows. The experimental de-
ever Ref.[8], where quantum state tomography is imple-taiis are given in Sec. Il. Some features of the quadrupole
mented for the whole cycle of Grover algorithm systems are presented in Sec. lII, and the process for obtain-

In this sense, it appears that, from the point of view ofing the quantum state tomography for quadrupole nuclei is
pure quantum information processing by NMR, there is still giscyssed in Sec. IV. Finally, the results are presented in Sec.
something left to be learnt from one- and two-qubit systemsy, fo|jowed by the conclusions. The Appendix shows some

For this purpose, quadrupole nuclei are particularly wellggyits of tomographed density matrices compared to calcu-
adapted. Implementation of pseudopure sthtd$ elemen-  |5ted ones using ideal rotations.
tary logic gateq12], simulation of quantum systenj43],

and relaxation studiefl4] have been reported in the recent
literature of NMR quantum computing. All these studies Il. EXPERIMENTAL PROCEDURES

The 2®Na NMR experiments described in this paper were
performed using a 9.4 T VARIAN INOVA spectrometer in a
*Email address: sarthour@cbpf.br lyotropic liquid-crystal system prepared with 35.9 wt. % of
"Email address: azevedo@if.sc.usp.br sodium decyl sulfatgFluka), 7.2 wt. % of decanolSu-
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pelco), and 56.9 wt. % deuterium oxid®,0, Merck), fol- 3) |[-3/2)=|11)
lowing the procedure described elsewh§ts]. 2Na NMR
data were recorded at room temperature using a home-built 2e3)
single-resonance probe with radio-frequeiidy Helmholtz-
like rectangular coilgonly one loop 2.5 cm high and 1 cm ?) |-1/2)=|10)
wide) separated by 7.5 mm. The geometry of the coils was II

(12)

chosen in order to improve rf magnetic field homogeneity
along the sample, which was packed in a 5 mm NMR tube )
0.5 cm high. Numerical simulations showed that the rf field

homogeneity is higher than 95% over the sample volume. ﬁ =D 5\
The B, field homogeneity was about 0.1 ppm. Gaussian ©) [3/2)=[00)
shaped rf _pulse; were used to .perform SeleCt'V? saturation g 1 schematic representation of the energy levels, for a spin-
(7/2) and mversmr(a-r_) of populatlons. Pulse durations were 3,5 system, with their respective labels.

set to provide a multiple of 2 rotations under the quadru-
polar interaction in order to minimize possible effects of the
quadrupolar evolution during the pulsg0]. The mean _rf p=—— ~ in(l - BH) == —¢eH. (2)
amplitudes and the frequency offsets were carefully adjusted z 2
to satisfy the selectivity conditiof.6—1§. The experimental ) ) ) )
calibration was checked against numerical simulations usingince radio-frequency pulses are unitary operations, they act
the full Hamiltonian, which showed that the single-quantum@nly on the parteH of Eq. (2). Therefore, the measured
transition, the case of the Hadamard operation on the firsjuantity in NMR experiments is the traceless deviation den-
qubit, is not affected by the quadrupolar interaction. A non-Sity matrix, which in the equilibrium is given by

selective hardr/20 pulse 1.5us long was applied in order

to measure the differences of populations for the three pairs Apeq=—&H. 3)

of neighbor levels. Experiments were performed with a re-

cycle delay of 500 ms. ThH&Na NMR spectra were obtained Before performing quantum computing, it is necessary to
averaging the free induction decéyiD) signal, obtained for Prepare the system in a pseudopure state. This can be done

each phaséx, y, —x, and -y) of the readingr/20 hard pulse using the pulse sequences descri_beq by F[ar:l_band Sinha
accompanied by the corresponding receiver cyclisn- [12], and then applying a magnetic field gradient to the sys-
dard CYCLOPS schemeFinally, all the spectra were nor- tem, in order to get rid of undesired off-diagonal elements. In

malized using the intensities of the equilibrium state. this work, the pseudo-pure states were prepared using the
same pulse sequences described in referefited2, but

employing an additional twofold phase cyclifig,y) in the
. NMR QUADRUPOLE SYSTEMS /2 pulses as an alternative to the use of magnetic field
gradient. The quantum operations were applied to the states
The most relevant interactions of a quadrupole nucleugbtained for each phase of the 2 pulse, which creates the
are the Zeeman interaction with a magnetic field and th@seudopure states. Therefore, four distinct NMR signals
electric quadrupole moment with an electric field gradientwere detected, and the final result, obtained after averaging,
The Hamiltonian for this system can be described in firswwas the same as if the quantum gates had been applied to a
order by Eq.(1), wherew, is the Larmor frequency of the pseudo pure state. For instance, the sequences for creating
nuclear magnetic moment in the presence of a magnetihe pseudopure state, represented my=(1/2")(1-¢)
field, andwq, is the effective quadrupole frequency charac-+¢|00)(00], are shown in Eq(4), whereY,; represents a
terized by the interaction between the nuclear quadrupolselectiver/2 pulse applied to the transitid = () along

112)=o1)

moment with the electric-field gradieft9)]. y direction, andX,, represents a selective/2 pulse ap-
plied to the transition(a = B) along —x direction. The
H =t +hog312-12). (1)  Squared symbols represent selectivgulses:
Uy =Xo3- Yizy

For a spin-3/2 system this Hamiltonian gives rise to four
unequally spaced energy levels, originating an NMR spec-

-y 2
trum containing three lines, corresponding to transitions be- Uz =Xo3- Yo,
tween adjacent levelsee Fig. 1L These energy staté3/2),
|1/2), |-1/2), and|-3/2) can be labeled a0y, |01), |10), Us = Yos- Y2,

and |[11) in analogy to two-qubit system containing two

I=1/2 coupled spind11,12,14. From the Hamiltonian, .

the density matrix can be obtained according to &9, in Us=Ya3- Y2, (4)
the high-temperature regime, whei is the partition

function, n is the number of qubits, an@=1/kgT and ¢ Therefore, the pseudopure statg can be constructed from
=p/2"=10"° for n=2 at room temperature. the equilibrium statey, as described in Eq5).
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1 N tion of the phase of the off-diagonal elements of the density
Poo= ZE UjpedV; - ©) matrix, and consequently controlling the phase of the quan-
! tum state.
A complete set of these ideal pulse matrices is shown in
IV. TOMOGRAPHY METHOD the Appendix. The symbol¥y; and Y, stand forsr/2 pulses

applied to the transitiof0 = 1) along thex direction and to

The density matrix of a general system and, consequentlyhe transition(2 = 3) along they direction, respectively. The
its deviation contains complex elements, except in the mairffect of the application of such pulses to the system is to
diagonal, which contains only positive real numbers. In ad+ring the off-diagonal elements of the density matrix to the

dition, the elements above the main diagonal are the complepain diagonal, as it is shown in E(), where only the main
conjugate of the ones below, so for a spin-3/2 system deviadiagonal elements are displayed for simplicity. The experi-
tion density matrices have the general form mental procedure for calibration of the pulses is given in Sec.
a " +i o +i ot Il, and the gﬁects qf nonperfect selectivity are discussed in

o Xt Wa Xt e Xty the concluding section.
Xa~1Ya b Xgt1Yq Xet1Ye

A= Xo~iyp Xa~iYa € XeHiyp | © p(Xor) = Xor- Ap - X
X~ iYe Xe—iYe Xp—iys  d at2y,+b
Therefore, to obtain the quantum-state tomography of any - 1 a=2y,*b
state, it is necessary to determine 16 variables, which are the 2 2c ’
four real elements of the main diagonal, and the other 12 2d
formed by real and imaginary parts of the nondiagonal ele-
ments. For quadrupole systems, the averaged NMR spec- _ +
trum, obtained after applying the CYCLOPS scheme to the P(Yag) =Yg+ Ap - Yaq
/20 reading pulse and receiver, depends only on the di- 2a
agonal elements oAp. In fact, for the spin 3/2 system 1 2b
described byAp, the intensities of each peak of the NMR == (9
spectrum obtained after applying the reading scheme are 2 C+2x+d
given by Eq.(7). c-2x+d
A= \E(ellelZa_ €1,852D — €,581,C — €158,.40), As can be seen from E), y, andx; are easily determined
if the diagonal elements are known. Since the diagonal ele-
Ay = 2(8148158 + €580 — €,38:C — €15810), ments of the density matrix can be obtained by the method

described earlier, the real and imaginary parts of the off-
= diagonal elements are easily obtained. A complete set of
Ag = \3(€138140 + 198530 + €1282C ~ €126, (7 equations that allow the determination of all off-diagonal el-
Thee; are absolute values of the/ 20 reading pulse matrix ements of the deviation density matrix is shown in Ed).
elements along any direction, as described in the Appendix.

A, A,, andA; stand for the NMR spectra intensities for the Ya=[p11(Xo1) = p2aXon) 112,

transitions (0 = 1), (1= 2) and (2 = 3), respectively. Be-

cause observable NMR deviation matrices are tracekess, Ya = [p22(X12) = pas(X12)]/2,

+b+c+d=0, a fourth equation can be added to the system.

Therefore, the four diagonal elements can be obtained after Vi = [p3a(Xoa) — pas(X29)1/2,

measuring each of the line intensities of the averaged spec-

trum and solving the set of E(7). The first step of the state _ _

tomography is to obtain the deviation density matrix main Xa=[p11(Yo) = pooAYo) 2,

diagonal, by using the process described above. For a spin-

3/2 system, the result gives the four diagonal elements, Xa= [p22(Y12) = padY12) /2,

¢, andd of Eq. (6). In order to get the off-diagonal elements

and determine the state tomography, rf transition-selective Xi = [p33(Ya3) — paa(Y29)1/2,

pulses were used. The evolution operators for these pulses

can be constructed according to E8) in the rotating frame. %6 = [ poo X12Xo1) = pasXaaXor) — V2Yal/N2,
U= eXF(_ i- [H + ﬁwR,:I z- ﬁwll a] . tp/ﬁ) . (8)

= =
= - + 4/ /
The parametemwge is the selective pulse carrier frequency, Yo = [paaY12Xor) = p2YaXow) +V2xal/\2,

w; is the amplitude of the rf pulséw,=7y B,), |, is the

[ I
angular momentum spin operator in theirection, and, is Xe = [p33(X23X12) = paa(Xo3X12) = V2y11/N2,
the pulse duration. The effect of the pulse operator is to B
induce rotations in the spin system, allowing the manipula- Ve = [paa(Y23X12) = pa(Y2aX10) + \g’gxf]/&,
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Real Imaginary

Xe = p33(Y23Y12Y01) — Paa(Y23Y12Y01) = V2%t + Xe,

- S
Ve = pas(XozXa2Xo1) — pasXosXaoXo) + V2Y1 + Xe. (10) : “ “‘&&
The expressiomy(Xmn, ... ,Y;;) stands for the diagonal ele- “ “<>'
ment(kth line andkth column of the deviation density ma-

trix after the application of the respectiV¥,,, ...,Yj;) pulse
sequence, from right to left. Because the main diagonal was FG. 2. (Color onling Quantum state tomography the deviation
obtained beforehand, the whole matrix is known. Inmatrix of the equilibrium state of*Na (1=3/2, two qubits. The
summary, the method to obtain the deviation densityreal and imaginary parts of the density matrix are shown on the left
matrix—state tomography-consists of determining its diag- and right hand side, respectively.

onal elements, after performing operations on the system,

which drag the off-diagonal elements into the main diagonalgreq matrix are shown on the left and right hand side of
Double-quantum selective pulses can also be used for detefy e, respectively. The simulated and experimentally deter-

mining the elementp,s, po4, andps4 and this method has ined deviation density matrices for this state are described
the advantage of utilizing a smaller number of pulses, as it i, the Appendix.

shown in Eq.(11). However, all the results described in this

aper were obtained using single-quantum selective pulses.
pap 9 gie-q P A. Pseudopure states

Xo = [p11(Yo2) ~ pas(Yo2) /2, The tomography of the deviation density matrices repre-
senting the four pseudopure states, which we will la&),,

Yo = [p11(X02) = pas(X02)1/2, Apo1, Apio, andAp;; were obtained, and they are presented
in Fig. 3, where only the real part is shown for simplicity,

Xe = [p22(Y139) — paa(Y191/2, since the contribution of the imaginary part is irrelevant to
these stateésee the numerical results in the Appendikhe

Ve = [pos(X19) = pas(X197/2, simulated and experimentally determined deviation density

matrices for each one of the pseudopure states are also de-
- = scribed in the Appendix.
X = [Paa(Y23Y13) = pasYasY1a) + V2x(1I\2, PP
B. Unitary Hadamard evolution

Ve = [pad(Ya5X1d) = pasYaaXaa) +V2x N2, (1D) _ ,
) ) ] The Hadamard gate is an one-qubit quantum gate, and for
It is also possible to use multifrequency pulses, so thagyadrupole systems it can be constructed using two selective
many imaginary(or rea) parts of different elements can be py|ses, as reported in Refl4] Both pulses have the same
obtained simultaneously. As an example, for spin 3/2, ongrequency—the same as the first transition- 1); however,
can excite the transition® 1) and(2 - 3) using a single  {he first one is ar/2 pulse applied along thedirection, and
two-frequency pulse. Since these pulses operate on cOmfne |ast one is ar pulse along the xdirection. The evolution
pletely different quantum states, parts of the elempptand  of this gate was followed, for each individual stage—after
p34 can be obtained from the new diagonal elements, simulihe application of each selective pulse—when it was applied
taneously[see Eq.(9)]. The use of multifrequency pulses tyice to the initial pseudopure stapg, The real part of the

becomes more interesting for higher spin systems. The ORstate tomography for the four stag@se for each pulgeof
erators of the selective pulses are easily obtained for other

quadrupole systems with higher values of spin, and they
have the same form of E¢8). In addition, the equations for

each matrix element are easily found by applying the ideal <
pulse operators pulses dp. As a result, the quantum state <><>‘ SN
tomography process described here can be straightforwardly w‘ ‘ Q?’
extended to any quadrupole system, provided that the NMR O “

spectrometer allows the application of selective pulses with

Apgo Apg;

reliable phase control. Apqg Apyy

O o8
=>

V. EXPERIMENTAL RESULTS

The procedure of quantum state tomography described in “‘
this paper was applied to a spin-3/2 system, using single-
quantum selective pulses. The deviation density matrix was
obtained experimentally for several coherent states. The to- FIG. 3. (Color onling The real part of the quantum-state tomog-

mography of the equilibrium state was also found, and igaphy for the deviation matrices representing the four pseudopure
presented in Fig. 2. The real and imaginary parts of the meastates, as described in the text.
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FIG. 4. (Color online The real part of the quantum tomography
after each stage of the Hadamard, as explained in the text.

LN
=
1
n
=
Q

Non-diagonal elements
A~ :

the H? (Hadamard gate applied twicesequence are pre-
sented in Fig. 4, where the symbols in the figure stand for:
Ap, (afterYoy), Ap, (after X5,-Yo1), Aps (after Yo;-X3,-Yoo),

and Ap, (after X3,-Yo1-X2,-Yoy). At the first stage of the
process the populations of the first two leve()) and|01),

are equally splitted between the two lower levels. At the
second stage, the relative phases are manipulated. The sys- —————————
tem is then taken to the pseudopure stgie at the third 0 100 200 300 400 500

stage. The initial state is recovered at the fourth and final Time (us)

stage. An important imaginary contribution was detected af-

ter the first stage of the Hadamard gate, which does not ap- FIG. 5. (Color onling Free evolution of theg, Ya, X4, Ya, X;, and
pear in the simulations with ideal pulses. This shows that the elements, after a harat/2 pulse. The points are experimental
action of the experimental selective pulse applied to the sygesults while the lines are numerical simulations of the system.
tem deviates from the idedtheoretica), which is due to

several factors and will be discussed in the conclusions. Newafter the application of a single/2 hard pulse, where the
ertheless, this imaginary part disappears at the end of thearrier frequency was set on the transitidn- 2). The result
whole process, and the self-reversibility of the Hadamards shown in Fig. 5, where the points are experimental data
gate is demonstrated. The simulated, and experimentally demd dashed lines are computer simulations for this particular
termined density matrix for the four stages of the Hadamardquadrupole system. As can be seen from Fig. 5, the compo-
gate, are also presented in the Appendix. nents of the elemenis,(p,=X,+iy,) andp; oscillate with the

As it can be seen in the Appendix, the experimental re'quadrupolar frequency, whiley remains unchanged, be-

sults have a fairly good agreement with the simulated ones ; e -
The small difference observed before and after the applicaqause’ contrarily to the transitiort§ ~ 1) and (2 - 3), in
tion of the double Hadamard gate is due a number of differ-
ent causes, one of which is the transverse relaxation. The
application of Hadamard gate takes about 2 m$00 us

for each pulsg and the preparation of the pseudopure state
takes about 1 ms. Therefore, the full operation of the Had-
amard gate takes-3 ms, which is of the order of, in this
system. We investigated the effects of other contributions
performing numerical simulations, which included the relax-
ation effects,B, and rf field inhomogeneity, errors in the
pseudopure state preparation, deviation from perfect rf pulse
selectivity, and, finally, phase deviation, which includes rf
phases and phase errors in the states. These simulations in-
dicated that all these effects contribute to the error in the FIG. 6. (Color onling The trajectory of the Bloch vector, for

phase of Fhe _f|nal state, as observed |_n F'g; 6. As can bgach individual qubit, during the Hadamard gate evolution. The
observed in Fig. 4, the Hadamard gate is acting only on thgqints are experimental results, the dotted biue line is an interpola-
qubit b(|ab)), while the qubita remains practically un- oy of the experimental data and the continuous red line is a nu-
changed during this operation. merical simulation. Numbers indicate the end of each stép
pulse, and the points between the numbers correspond to matrices
tomographed from the application of the selective rf pulses in sev-
As a third example of quantum-state tomography applicaeral steps along their Gaussian envelofiesermediate anglgsac-
tion, the free evolution of the density matrix was studiedquired for completeness.

0
[0} 0,

1Y 1)
qubit a qubit b

C. Quadrupolar free evolution
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first order the transitionl = 2) does not depend on the matrix, phase errors are expected to be more important in the
quadrupole interaction. case of superposition states like the Hadamard gate. Such
errors were numerically estimated by introducing spurious
phase contributions in the ideal pulse matrix, and simulating
VI. DISCUSSION AND CONCLUSIONS the tomography process. The full Hamiltonian was also con-
The evolution of an one-qubit state represented by a derﬁidgred in these simulation;, aIIowing. an estimate of the er-
sity matrix p can be visualized through the motion of its o introduced by the use of ideal rotations. The results are as
Bloch vector over the Bloch sphere. The density matrix forfollows.
the individual qubits can be obtained from the partial trace First, we consider the selectivity. Because in our experi-
[10] of the full density matrix of the system, which in this ments wasw;/ wg chosen to be approximately 0.02, the error
case involves two qubits. In order to do $b/4)th of a unity ~ due to nonperfect selectivity is less than 1% per applied
matrix was added teAp(s =~ uHy/kgT~107°), whereAp is  pulse. This small effect is apparent in Fig. 6 as a slight
the tomographed deviation density matrix for each individualchange for the Bloch vector associated to qubiAnother
qubit, the Bloch vector for each one of them was obtainedmportant source of error is the spin-spin relaxatiepin-

according to Eq(12) [10]. lattice relaxation time is too long, compared to the time scale
of the experimen{14]), which combined with the nonselec-
1+r(t) o o o :
p(t) = ——. (12) tivity produces a phase error of at most 2° per applied pulse.
2 Also, small uncertainties in the quadrature of the spectrom-

ster(maximum of 2°, for the equipment usednd B, field
iInhomogeneity can produce a total phase deviation of at most
4° per applied pulse. Added together, these sources account
for a total phase deviation per applied pulse of at most 5°.
ssuming this phase error per pulse, it is possible to estimate
e intrinsic uncertainty involved in the tomographed data
introducing them into the matrices that represent the pulses
in the simulation. With this, we arrived to a percent error of

continuous line is a numerical simulation, using ideal pulsesa R :
O . t most 6%(for the main diagonalupto 9% (for high-order
(see the Appendjx and the dotted blue line is an interpola- coherenceg( It should be nogt]ed athef)t this érror tgnds to in-

tion of the exp_erlmental points. A.‘S it can be seen_from thecrease for higher-order coherences. This is confirmed by the
figure, the qubitb evolves according to the theoretical pre-

dictions, while the qubiti remains basically unchanged dur- good. agreement between Fhe.expenmental and simulated
ing the \’/vhole process density matrices, for the equilibrium gnd pseudostates, where
After the applicatioﬁ of the first pulse of the Hadamardfewer pulses with proper pha;e cycling were used. However,
S . these errors accumulate during the execution of a quantum

gate(r/2 aroundy, number 1 in Fig. § one can notice that

the state of qubib does not evolve as predicted by the simu_gate such as the Hadamard gate, producing states deviations,
. ) . - such as observed in Fig. 6.
lations using the ideal pulses and the state after the first pulse In summary, the quantum-state tomography has been suc-

of the Hadamard gate is off theaxis(the possible causes for . , :

. : cessfully implemented for the first timgo the best of au-
thj’sgf:)efﬁ]:ra:ézcrﬁzfgd :g?;ﬂ;erﬁ;grihgh%&rgefegggd thors’ knowledge for a quadrupole system. The experimen-
P 9 bplied, d g tal results are in good agreement with the calculated ones,

zerr(r)f'?rglr:a?:gn?rr?u:%et?? grﬁcm);érag pr:eérly GSe_?Rén;.T.ZI and this process can be easily extended for higher spin val-
icl " u n FIg. ©. Intal yes. The guantum-state tomography of the Hadamard evolu-
and final one-qubit states are very close, which demonstratqﬁ)n and the trajectory of the Bloch vector on the Bloch

thel:et::-reverﬂ:mlr::yto:ntherHar(]damrard gatre. . din thisphere demonstrate that one and two qubits logical opera-
€ quantum tomograpny proceaure propose jons can be implemented on quadrupole systems.

paper, we neglected a number of effects, which—adde
together—contribute to the errors in the tomographed devia-
tion density matrix and to the difference between the ideal
trajectory and the experimental data observed in Figa 6
relative error of about~15°/360°=4%. The possible
sources of errors ar@l) nonperfect selective pulse®) re- The authors acknowledge support from CAPES, CNPq,
laxation effects(3) B, andB; field inhomogeneities, angt) and FAPESP. R.S_.S. especially qcknowledges the Brazilian
relative phase errors associated to rf pulses applied alang Quantum Information—CNPq project—and the CAPES Pro-
and # axes in the rotating frame. Most of them can bedoc grant program. A special thanks to E. L. G. Vidoto for
minimized through a good calibration of the selective rfconstructing the NMR probe.

pulses and the use of high homogeneity Bgrand B; mag-

netic fields(as described in the experimental sectidfow-

ever, residual imperfections will always remain. Because the APPENDIX

tomography method has to distinguish the imaginary from Ideal selective pulses are used to derive the equations that
the real components of each element of the deviation densitgetermine the nondiagonal density matrix elements.

The symbolo represents a vector whose components are th
Pauli’'s matrices, and(t)stands for the unit Bloch vector, at a
time t, which can be followed even during a logical opera-
tion, for each qubit. As a result, the trajectory on the Bloch
sphere was determined, during the application of a doubl
Hadamard gate on the qutit|ab)) as presented in Fig. 6,
where the points were obtained from Ed.2). The (red
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