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A Hard Disk Drive
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An (old) Recording Head on a Disk
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Image from wikipedia.com
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A TDMR Perspective

Detecting data in this configuration is a multidisciplinary 2D problem.
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Time

Longitudinal Magnetic 

Recording  (LMR)     

1 Tb/in2

10 Tb/in2

Perpendicular Magnetic     

Recording (PMR)   

Bit Patterned Magnetic Recording (BPMR) 

Heat Assisted Magnetic Recording (HAMR)

Microwave Assisted Magnetic Recording (MAMR)

Shingled Write Recording (SWR)

150 Gb/in2

5 Tb/in2

Discrete Track Recording (DTR)   

(1-2 generations, prepare for BPM)

Energy Assisted Recording probably on BPM

Shingled Write & Two Dimensional Magnetic Recording (TDMR)
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A 2009 Industry Technology Roadmap

Further reading: Y. Shiroishi, Intermag 2009, FA-01
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Magnetic Energy Relations in 

Small Symmetric Particles
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Suggested reading:  Zhang and Bertram, IEEE Trans. on Magnetics, Vol 34, No. 5 1998

R. Wood, IEEE Trans. on Magnetics, Vol. 41, No. 1,  2009

ANISOTROPY ZEEMAN THERMAL
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A View with Dynamic External Field H
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Energy Barriers and the Probability of Switching
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Probability that a 

grain switches in a 
given moment

Suggested reading:  Zhang and Bertram, IEEE Trans. on Magnetics, Vol 34, No. 5 1998

Victora and Chen,, Proc. of the IEEE, Vol. 96, No. 11, Nov 2008

Victora,  Physical Review Letters, Vol. 63, No. 4, July 1989 
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Exemplary Switch Probabilities vs. Field Strength

13

-1.5 -1 -0.5 0 0.5 1 1.5
10

-50

10
-40

10
-30

10
-20

10
-10

10
0

Plotted for K
u
 V / kT = 40

Effective Field (normalized units)

S
w

it
c
h

 P
ro

b
a
b

ili
ty

 

 

P
+
(H)

P
-
(H)



© 2014 HGST, a Western Digital company

A Discrete Time Markov Model for Two-State 

Magnetization

14
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An example of probability changes at a grain over time

-15 -10 -5 0 5 10
-2

0

2

N
o

rm
a

liz
e
d
 F

ie
ld

 a
t 

G
ra

in

 

 

-15 -10 -5 0 5 10
0

0.5

1

P
ro

b
a
b
il
it
y
 p

Time

Field at 

trailing 

edge

Probability

Field at 

leading 

edge

Initial 

probability:½ 



© 2014 HGST, a Western Digital company

Probability and Noise Maps in Two Dimensions
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Wrong-Way Shingling with Different Head Skew
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Standard PMR probability maps with 

Adjacent Track Interference (ATI)
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(but: grains have finite and nonconstant volume)
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<A> = 75.91nm2, sA/<A>=28.00%, Gp=9.40nm, Gb=0.70nm, =0.86

Voronoi Media 

Suggested reading: Chan and Elidrissi, IEEE Trans. on Magnetics, Vol. 49, Issue 6,  2013

.
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(some further complications: grains do interact)

grain i grain j

Vi

aij

Sij

Neighbors tend to magnetize in 

opposite direction

Neighbors tend to magnetize 

in same direction

grain j
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Suggested reading: S. J. Greaves et al., Journal of Magnetism and Magnetic Materials 287, 2005. 

.



© 2014 HGST, a Western Digital company© 2012 HGST, a Western Digital company

The Read Sensitivity or “Impulse Response” Function
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Suggested reading: Yuan and Bertram, IEEE Trans. on Magnetics, Vol. 30, Issue 3, 1994

Wood and Wilton, IEEE Trans. on Magnetics, Vol. 44, Issue 7,  2008 
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A Reciprocity Principle 

Suggested reading: N. Smith, IEEE Trans. on Magnetics, Vol. 29, No. 5,  1993

Litvinov and Khizroev,  Journal of Applied Physics, Vol. 97 , 2005

Fictitious racetrack 

current field source
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A Further Simplification
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Numerical Results for the Head Sensitivity Function
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Standard Reader Structures
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Putting it all together for linear magnetic systems: 

generate readback signals by 2D convolution
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Standard PRBS Testing Techniques in One Dimension
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Write Pattern
(a pseudorandom sequence)

Readback waveform

Linear Response
(deconvolution of readback

waveform with write pattern.)

+1

-1
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Typical Pseudorandom Sequence Test Results in 

One Dimension
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Almost no effect
on one side

Almost symmetric effect 
(but it's out of phase!)

"Good"

"Bad"

What is this? A "magnetic bias
parameter" measures this
asymmetry.

Suggested reading: Palmer et al, IEEE Trans. on Magnetics, Vol. 24, Issue 6,  1988

Hermann, IEEE Trans. on Magnetics, Vol. 26, Issue 5, 1990

.

These results are LMR recording 

technology, not PMR

Nonlinear 

kernelsLinear kernel
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Two Dimensional Pseudorandom Arrays
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u

v

Some Properties

Almost DC balanced
2D window property
Two-valued 2D autocorrelation
Shift-multiply property

Suggested reading: MacWilliams and Sloane, Proc. of the IEEE, Vol. 64, Num 12, December 1976

T. Etzion, Trans. on Information Theory, Vol. 34, No. 5, September 1988
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A more practical example of a 2D PRBS

29
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2D Array Experimental Method

Write:

Read:

…

…

…

…

…

…
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Measured 2D Deconvolution Result 

with Pseudorandom Array Pattern
Downtrack bits
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A Closer Look at the Measured “Patch Response” 

(the linear kernel)
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A second example of the linear portion of a 2D Pulse 

Response

Top View

Bottom View
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OK, what about the Read Sensitivity Function?

(a.k.a. 2D impulse response)
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Measured 2D Read Sensitivity Function via the 

Projection Method
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Two examples of TDMR Magnetic Systems and 2D 

Magnetic Signal Processing Configurations

36

A small offset

configuration

A large offset

configuration

(a simple average)

(this one’s harder)
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Analyzing the Small Offset Configuration

37

Assumption: the two readers see identical magnetization but have independent “electronic” noises:

Then, an optimal technique is to use this estimate of            :

Note that this signal processing step can be written in matrix notation:

Suggested reading: H.L.  Van Trees, “Detection, Estimation, and Modulation Theory Part I”, any edition.
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Small Offset Configuration Advantages
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The Matrix Language of 2D Signal Processing
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HCH(z)HEQ(z)

Magnetics

Channel Filter

To detector

Write current 

vectors

a’

B(z)y

Channel Target

X

Suggested reading: P. Vaidyanathan, “Multirate Systems and Filter Banks”, 1992
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3x3 equalization design equations
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Inverting the Magnetic Channel

41
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Noise Prediction and Minimization from Past 

Samples in One Dimension

42

Suggested reading: Coker et al, IEEE Trans. on Magnetics, Vol. 34 p 110-177, 1998 

+

Noise only!
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Two Dimensional Noise Prediction 

and Minimization

43
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2D predictor filter banks from past samples

Thm: u’, v’, and w’ are mutually orthogonal (uncorrelated) everywhere 

when power-minimized, except when aligned in the same time instant.
Key assumption:  WSS noise
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Design equations for 2D noise prediction from past

samples based on noise power minimization/whitening 

448/1/2014

B(z)

3x3 form example for minimization filter: 

3x3 Design equations:

Bleacher Filter

Impulse targets: theoretical intermediate 

points

To detectorADC samples

Total Equalization 

HEQ(z)
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An Example Detector Target Filter B
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Noise Correlation Example after Noise 

Prediction with Past-Sample minimization

468/1/2014
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Maximum-Likelihood Detection of a Single Stream
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Time index 𝟏 ≤ 𝒌 ≤ 𝑵

∆𝒊𝒋
(𝒌)
= 𝒀𝒊𝒋
(𝒌)

- 𝒚(𝒌)

“Noise” in the branch from state 

𝒊 𝐭𝐨 𝐬𝐭𝐚𝐭𝐞 𝒋 in the 𝒌𝒕𝒉 instant.   

Expected observation on the branch from state 𝒊 𝐭𝐨 𝐬𝐭𝐚𝐭𝐞 𝒋 𝐝𝐮𝐫𝐢𝐧𝐠

the 𝒌𝒕𝒉 instant.  A function of a presumed input sequence 𝒙𝟎
𝑵

Actual observation in the 𝒌𝒕𝒉 instant.   

𝒙(𝒌) = +𝟏

𝒙(𝒌) = −𝟏
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𝒐
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𝒋

𝒊, 𝒋 = 𝟏

𝒊, 𝒋 = 𝟐

∆𝟐𝟐
(𝟑)

∆𝟏𝟏
(𝟑)

∆𝟐𝟐
(𝟒)

∆𝟏𝟏
(𝟒)

∆𝟐𝟐
(𝟓)

∆𝟏𝟏
(𝟓)

ML Sequence Detection: maximize

𝑷 𝒙𝟎
𝑵|𝒚𝟏
𝑵 ∝ 

𝒌

𝟏

𝟐 𝝅𝝈𝟐
𝒆
−  (∆𝒊𝒋

(𝒌))𝟐

𝟐𝝈𝟐

over all possible input sequences 𝒙𝟎
𝑵.  
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Maximum-Likelihood for Joint Vector Input/Output

Detection

48

T is the total channel length = maximum span of nonzero taps relating all inputs to any output, and M is the number of channels. 

2(T+M)

states

Key relationship: the branch probability

Key additional assumption:  Gaussian noise

Example:

Suggested reading: MacKay, “Information Theory, Inference, and Learning Algorithms”, Cambridge, 2003
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New 2D effect:  Invariance after 

invertible matrix rotation
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B(z)

Bleacher Filter
Intermediate 

Equalization Target

To detector
ADC samples

Total Equalization 

HEQ(z) V

DOES NOT depend on the details of V!

Special case: eigendecomposition of 



© 2014 HGST, a Western Digital company

 Introduction

 Magnetic Models in Two Dimensions

 Testing in Two Dimensions

 Magnetic Signal Processing in Two Dimensions

 Questions

TDMR Talk Summary



51


